In this example, we will be working with the Titanic dataset. This dataset contains information about the 887 passengers on the voyage of the Titanic. Of the columns available, we will be particularly interested in the following:
Survived
- Binary variable indicating whether or not the passenger survived the voyage. Pclass
- Categorical variable indicating the passenger class. Sex
- Categorical variable indicating the gender of the passenger. Age
- Age of the passenger.Our goal in this example will be to build a model for the purposes of predicting whether or not particular passengers survived the disaster based on their values for Pclass
, Sex
, and Age
.
We will begin by importing the packages and tools that we will use in this example.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
The data is stored in the tab-delimited file titanic.txt
. We will load that now.
df = pd.read_csv('data/titanic.txt', sep='\t')
df.head(10)
print(df.shape)
Before creating any models, we will use matplotlib
to visually inspect the relationships between our features and our label.
female_survival_rate = np.sum((df.Sex == 'female') & (df.Survived == 1)) / np.sum(df.Sex == 'female')
male_survival_rate = np.sum((df.Sex == 'male') & (df.Survived == 1)) / np.sum(df.Sex == 'male')
sex_survival_rates = np.array([female_survival_rate, male_survival_rate])
sex_death_rates = 1 - sex_survival_rates
plt.figure(figsize=[6,4])
plt.bar(['Female', 'Male'], sex_survival_rates, label='Survived',
color='cornflowerblue', edgecolor='k')
plt.bar(['Female', 'Male'], sex_death_rates, label='Died',
bottom=sex_survival_rates, color='Salmon', edgecolor='k')
plt.legend(loc="center left", bbox_to_anchor=(1.03,0.5))
plt.ylabel('Proportion')
plt.title('Survival Rate by Sex')
plt.show()
class1_survival_rate = np.sum((df.Pclass == 1) & (df.Survived == 1)) / np.sum(df.Pclass == 1)
class2_survival_rate = np.sum((df.Pclass == 2) & (df.Survived == 1)) / np.sum(df.Pclass == 2)
class3_survival_rate = np.sum((df.Pclass == 3) & (df.Survived == 1)) / np.sum(df.Pclass == 3)
class_survival_rates = np.array([class1_survival_rate, class2_survival_rate, class3_survival_rate])
class_death_rates = 1 - class_survival_rates
plt.figure(figsize=[6,4])
plt.bar(['Class 1', 'Class 2', 'Class 3'], class_survival_rates, label='Survived',
color='cornflowerblue', edgecolor='k')
plt.bar(['Class 1', 'Class 2', 'Class 3'], class_death_rates, label='Died',
bottom=class_survival_rates, color='Salmon', edgecolor='k')
plt.legend(loc="center left", bbox_to_anchor=(1.03,0.5))
plt.ylabel('Proportion')
plt.title('Survival Rate by Class')
plt.show()
#prop_surv =
plt.figure(figsize=[8,6])
plt.hist([df.Age.values[df.Survived == 1], df.Age.values[df.Survived == 0]],
bins=np.arange(0,90,5), label=['Survived','Died'], density=True,
edgecolor='k', alpha=0.6, color=['cornflowerblue','salmon'])
plt.xticks(np.arange(0,90,5))
plt.legend()
plt.xlabel('Age')
plt.ylabel('Proportion')
plt.title('Survival Rates by Age Group')
plt.show()
We will separate the numerical and categorical features into separate arrays so that we can apply one-hot encoding to the categorical features. We will also extract the label array.
Xnum = df.iloc[:, [4]].values
Xcat = df.iloc[:, [1, 3]].values.astype('str')
y = df.iloc[:, 0].values
We will now perform one-hot encoding on the categorical features.
encoder = OneHotEncoder(sparse=False)
encoder.fit(Xcat)
Xenc = encoder.transform(Xcat)
print(Xenc.shape)
We will now recombine our numerical feature array with our one-hot encoded categorical feature array.
X = np.hstack([Xnum, Xenc])
We will split the data into training, validation, and test sets, using a 70/15/15 split.
X_train, X_hold, y_train, y_hold = train_test_split(X, y, test_size = 0.3, random_state=1, stratify=y)
X_valid, X_test, y_valid, y_test = train_test_split(X_hold, y_hold, test_size = 0.5, random_state=1, stratify=y_hold)
print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)
In the cell below, we create a logistic regression model, and then calculate its training and validation accuracy.
logreg_model = LogisticRegression(solver='lbfgs', penalty='none')
logreg_model.fit(X_train, y_train)
print('Training Accuracy: ', round(logreg_model.score(X_train, y_train),4))
print('Validation Accuracy:', round(logreg_model.score(X_valid, y_valid),4))
We will now perform hyperparameter tuning to select the optimal value for the max_depth
parameter for a decision tree.
tr_acc = []
va_acc = []
depth_list = range(1,25)
for d in depth_list:
temp_mod = DecisionTreeClassifier(max_depth=d, random_state=1)
temp_mod.fit(X_train, y_train)
tr_acc.append(temp_mod.score(X_train, y_train))
va_acc.append(temp_mod.score(X_valid, y_valid))
plt.figure(figsize=([9, 6]))
plt.plot(depth_list, tr_acc, label='Training Accuracy')
plt.plot(depth_list, va_acc, label='Validation Accuracy')
plt.xlabel('Maximum Depth')
plt.ylabel('Accuracy')
plt.xticks(depth_list)
plt.legend()
plt.show()
It appears that we get the best performance on the validation set when max_depth=10
. We confirm this below.
ix_best = np.argmax(va_acc)
best_md = depth_list[ix_best]
print('Optimal Value of max_depth:', best_md)
We will now create and score our decision tree model.
tree_model = DecisionTreeClassifier(max_depth = best_md, random_state=1)
tree_model.fit(X_train, y_train)
print('Training Accuracy: ', round(tree_model.score(X_train, y_train),4))
print('Validation Accuracy:', round(tree_model.score(X_valid, y_valid),4))
We will now create a random forest model consisting of 500 trees, each with a max_depth
of 32.
forest_mod = RandomForestClassifier(n_estimators=500, max_leaf_nodes=32, random_state=1)
forest_mod.fit(X_train, y_train)
print('Training Accuracy: ', round(forest_mod.score(X_train, y_train),4))
print('Validation Accuracy:', round(forest_mod.score(X_valid, y_valid),4))
The random forest model had the highest validation accuracy of any of our models, so we will select it to be our final model. We will now calculate this model's accuracy on the test set.
print('Test Set Accuracy: ', round(forest_mod.score(X_test, y_test),4))
In the cell below, we display the confusion matrix for our test set.
test_pred = forest_mod.predict(X_test)
cm = confusion_matrix(y_test, test_pred)
cm_df = pd.DataFrame(cm)
cm_df
We finish this example by displaying the classification report for the test set.
print(classification_report(y_test, test_pred))