
CHAPTER 1 – The Measurement of Interest

1.11.1 ACCUMULATION FUNCTIONS AND THE TIME VALUE OF MONEYACCUMULATION FUNCTIONS AND THE TIME VALUE OF MONEY

Time Value of Money

Everything we will learn in this course is based upon the concept of the time value of money.  Time value of
money refers to the idea that receiving a certain amount of money today is worth more than receiving the same
amount of money at some future time. To illustrate the intuition behind this idea, consider the following scenario.

Assume that you win a small lottery. You are given the choice of two payments: $100 right now, or $K to
be paid one year from now. Let's consider under what conditions you would be enticed to take the later
payment. 

If K < 100 , then you would certainly take the earlier payment. It would not make sense to wait one year
to receive less money. Even if  K = 100 ,  you should almost surely take the immediate payment. The
payments are in the same amount, so there is no incentive for you to delay receipt of the payment. The
amounts of the immediate payment and the delayed payment are the same, but you would likely attribute
some additional worth to being able to receive the money immediately. Thus, we can say that the  time
value of a payment of $100 to be received immediately is greater than the time value of the payment of $100
delivered one year from now.  

It is clear that for you to consider taking the later payment, it would need to be in an amount larger than
$100. Take a moment to try to consider how large K would need to be for you to choose to take the later
payment rather than receiving $100 immediately. 

For the sake of discussion, let's assume that you have decided that you would take the earlier payment if
K < 120 , and you would take the later payment if K > 120 . Let's also assume that if K = 120 , then you

would be equally happy with either payment. If this is the case, then a payment of $100 today would have
the same inherent worth to you as a payment of $120 paid one year from now. We could say that the two
payments have the same time value to you, even if they are in different amounts. 

It is entirely possible that someone else might have a different perspective on the relative value of these
payments. Someone who has little immediate need for additional money might be more willing to take a
later payment, and would thus require a smaller incentive to delay the payment. Such an individual
might consider $100 paid today to have the same time value as $105 paid one year from now. This person
would gladly trade $100 today in order to receive $110 one year from now, whereas you would refuse
such an offer. 

Although the exact way in which time effects the perceived value of a payment is subjective and can vary from
one person to the next, it is hopefully clear that the time at which a payment occurs does effect the inherent value
of that payment. 

When two entities enter into an agreement that  involves an exchange of money at  different times,  they will
generally need to decide ahead of time on a method for determining the time value of money so that they can
compare  the  value of  payments  occurring at  different  times.  This  goal  can  be  achieved through the  use  of
accumulation and amount functions, which we will introduce soon. 
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Interest

The most common application of the time value of money is interest. Let's assume that an amount P is borrowed,
under the condition that the borrower will repay the loan at some point in the future. The concept of the time
value of money dictates that for this arrangement to be fair to the lender, the amount repaid must be greater than
the initial amount borrowed. Let's denote the amount repaid as P+ I . The quantity P is the original loan amount,
which is also referred to as the principal of the loan. The amount I is the interest on the loan, and can be thought
of as a fee that the borrower pays to the lender to compensate the lender for temporarily giving up access to their
money. 

Loans are a type of investment. The lender can be thought to be investing the loan principle with the expectation
of  receiving  a  larger  amount  in  return  at  some point  in  the  future.  Interest  is  also  paid  on  other  types  of
investments, such as bonds, which we will discuss in detail in later sections. 

Accumulation and Amount Functions

In this class, we will use the concepts of accumulation and amount functions to track the growth rate and value of
an investment that is earning interest. The definitions of these types of functions are provided in the box below.

Accumulation and Amount Functions

Assume that an amount of principal P is invested at time t = 0  in an account that earns interest. 
• The amount function for the account is a function A(t )  that provides the value, or balance,

of the account at time t. It follows that A(0) = P .
• The accumulation function for the account is a function a(t)  that provides the multiple by

which the account has grown during the first t years. 
• It follows from the definitions that A(t )  and a(t)  are related by A(t) = Pa (t) .

There are two criteria that a function must satisfy to be a valid accumulation function. These are that
a(0) = 1  and a(t) > 0  for all t ≥ 0 .

It is important to remember that an accumulation function a(t )  is required to satisfy the property a(0) = 1 . We
will see problems later in which we are required to find accumulation functions satisfying certain criteria. This
property can help make this task easier, and also provides a way of double-checking our answers. 

Example 1.1 An account earns interest according to the accumulation function a(t) = 1 + 0.01 t 2 .
Assume 100 is invested into the account at time 0. 

a) Find the value of the account at the end of 2 years.
b) Find the value of the account at the end of 5 years

Example 1.2 A loan accumulates interest according to an accumulation function of the form a(t ) = ek t . The
loan is to be repaid with a single payment of 2642.07 at the end of 10 years.  An amount of
2078.33 was owed at the end of 6 years. Find the original loan amount.
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We will see a wide variety of accumulation functions in this course, and most new concepts that we introduce
early on will be explained in terms of general accumulation functions. That said, there are two specific forms of
accumulation  functions  that  will  be  of  particular  importance  to  us.  Those  are  the  accumulation  functions
associated with simple interest and compound interest. In simple interest, the account balance increases linearly
over time, as opposed to compound interest where the account balance increases exponentially. 

Simple Interest

Simple interest is a form of interest accumulation in which the value of the investment increases linearly over
time. There are infinitely many simple interest accumulation functions, but they all take a similar form. Specific
simple interest accumulation functions are defined by the choice for the value of a special constant i, called the
simple interest rate.

Simple Interest

• Let i be a constant, which we will call the annual simple interest rate.
• The simple interest accumulation function defined by i is given by a(t) = 1 + i t .

Since the accumulation function for simple interest is a linear function of t, the net growth in the account over any
two time periods of equal length will be exactly the same.

Example 1.3 A loan of 200 is charged simple interest at an annual rate of 10%. 
a) Find the amount owed at the end of 5 years.
b) Find the increase in the amount owed during year 5. 
c) Find the increase in the amount owed during year 6. 

Simple interest is generally applied when working with short-term loans or investments whose duration is less
than one or two years. For longer-term investments, it is more standard to use compound interest, which we will
discuss next. 

Compound Interest (Annual Compounding)

Compound interest refers to any form of interest in which the accumulation is represented by an exponential
function. Nearly all of the problems you will encounter in this course will use accumulation functions associated
with compound interest, and you will be introduced to many alternate forms for such accumulation functions. We
will  begin by considering the most  basic  form of  accumulation function associated with compound interest,
interest with annual compounding. 

Compound Interest (Annual Compounding)
• Let i be be a constant, which we will call the annual effective interest rate.  
• The compound interest accumulation function defined by i is given by a(t ) = (1+ i )

t .
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Example 1.4 A loan of 200 is charged compound interest at an annual effective rate of 10%. 
a) Find the amount owed at the end of 5 years.
b) Find the increase in the amount owed during year 5. 
c) Find the increase in the amount owed during year 6. 

As mentioned previously, most of the problems encountered in this course will deal with compound interest. The
instruction  to  use  compound  interest  is  sometimes  related  by  explicitly  stating  that  an  investment  earns
compound interest.  In other cases,  however, this information is  conveyed in the way that the interest rate is
described. Any time that you see an interest rate described using some variation of the words “annual” and
“effective”, you should assume that you to being asked to use compound interest. 

We will  now give  several  examples  of  sentences  that  can be  used to indicate  the use  of  compound interest
accumulation functions. The following statements all mean exactly the same thing. 

• A loan is charged compound interest at an annual effective rate of 6%. 
• A loan is charged interest at an annual effective rate of 6%. 
• A loan is charged interest at a rate of 6% annual effective. 
• A loan is charged interest at an effective rate of 6% per annum. 
• A loan is charged interest at a rate of 6% compounded annually. 

Example 1.5 Erlich simultaneously makes investments into two different funds: Fund A, and Fund B. 
• Fund A earns interest at a rate of 4% annual effective. 
• Fund B earns interest at a 6% annual effective rate. 
• The amount invested in Fund A was twice the amount invested in Fund B. 
• After 6 years, the two accounts are collectively worth  $20,000. 

Determine the combined value of the funds 10 years after the initial investments. 

Example 1.6 Lucy  and  Patty  each  invest  200.  Lucy's  investment  earns  compound  interest  and  Patty's
investment earns simple interest. At the end of 2 years, the two investments are of equal value.
At the end of 4 years, the value of Lucy's investment is 1.05 times that of Patty's investment.
Find the value of Patty's investment after 5 years. 

The motivation behind the formula for annual compounding is the assumption that interest is applied to the
account at the end of each year. The interest accumulated each year is added to the current balance, and will itself
earn interest during the subsequent years. As a result, the value of the account will increase by a factor of 1+i
each year. After t years, the value will have increased by a factor of a(t ) = (1+ i )

t . 

This interpretation implies that the balance is constant throughout the year, only increasing at the end of the year.
This would technically result in a piece-wise defined accumulation function with jump discontinuities at the end
of each year when the compounding occurs. To avoid complications stemming from working with discontinuous
functions, we will  assume that the balance is continuously increasing and that the the accumulation function
a(t) = (1+ i )

t  is valid for all times t. 

Example 1.7 Beth deposits 200 into an account that earns a 4% annual effective rate of interest. Jerry deposits
300 into an account that earns interest at an effective rate of 8% per annum. How many years
pass until the two accounts have the same balance? Round your answer to 2 decimal places.
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Compound Interest (Continuous Compounding)

As mentioned earlier, there are other types of accumulation functions that can be used to represent compound
interest. The choice of which form to use depends upon how the rate you are provided has been described. We
already  know  that  when  we  are  told  that  the  rate  is  an  “annual  effective  rate”,  then  you  would  use  the
accumulation  function  a(t) = (1+ i )

t ,  where  i denotes  the  rate.  If,  however,  you  are  told  that  the  rate  is
compounded continuously, then you would use an accumulation function of the form described below. 

Compound Interest (Continuous Compounding)
• Let  δ  be be a constant, which we will  call  either the  continuously compounded rate of

interest or the force of interest.  
• The compound interest accumulation function defined by δ  is given by a(t) = eδ t .

Although we will tend to use δ  to denote the continuously compounded rate of interest, it is also quite common
to see r used to denote this rate. 

Example 1.8 A fund earns interest at a continuously compounded rate of 12%. How long does it take for the
value of the fund to double?

We have introduced two quite different-looking functions for compound interest, a(t) = (1+ i )
t  and a(t) = eδ t .

The forms for these accumulation functions are not as different as they might seem at first glance. They are, in
fact, simply different expressions of the same idea. Any function of the form a(t) = (1+ i )

t  can also be written in
the form a(t) = eδ t , although the values of i  and δ  will differ slightly.  

It might seem redundant to introduce two different ways of expressing the same concept, but both of these forms
are useful. Each form has situations for which it is more convenient to use than the alternate form.

Example 1.9 Assume that δ = 8%  and (1+ i )
t
= eδ t . Find i .

The rates δ  and i  are said to be equivalent rates since the accumulation functions associated with them are the
same, and thus they describe the same rates of growth (although in slightly different ways).  We will  discuss
equivalent rates in more detail in Section 1.5. 

Compound Interest: Varying Annual Rates

It is not uncommon for an account earning compound interest to earn different effective rates during different
years. The process for dealing with such scenarios is explained below. 

• Assume an account earns an effective annual rate of i1  during the first year, i2  during the second year,
and so on, eventually earning a rate of it  during year t.

• The accumulation function for the account is given by a(t ) = (1 + i1)⋅(1+ i2)⋅...⋅(1 + i t) .

Example 1.10 Joe deposits 100 at time 0. His account earns 5% in year 1, 7% in year 2, and 4% in year 3. Find
the value of the account at the end of the third year.
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Amount of Interest Earned

Assume that a certain amout of principal is invested into an account at time 0, and no other payments are made
into the account. The amount of interest earned by the account during a specific time period is equal to the
increase in the value of the account during that time period. More precisely, the amount of interest earned during
the period between times t 1  and t 2  is equal to A(t 2) − A( t1) .

Example 1.11 A loan of 750 is  charged interest  according to the accumulation function  a(t) = 1 + 0.08 t 2 .
Determine the amount of interest accumulated between the end of the 16th and 24th months. 

We are often asked to determine the amount of interest earned on an investment during a specific  one year
period. Let I t  denote the interest accumulated during year t, where t is a whole number.  Since year t starts at
time t−1  and ends at time t , we get that I t = A (t ) − A (t−1) .

We can apply the formula I t = A (t ) − A (t−1)  when working with any sort of amount function. But since we will
predominately work with simple and compound interest, it is useful to have special formulas for  I t  to apply
when  we  are  working  specifically  with  these  types  of  interest.  Such  formulas  are  provided  below.  There
derivations are not show, but they following directly from the expression I t = A (t ) − A (t−1) .

Amount of Interest Earned During Year t
Assume a deposit  of  P is made into an account earning interest according to some accumulation
function. Let I t  refer to the amount of interest earned during year t. 

• In general, we have that I t = A (t ) − A (t−1) .
• If the account earns simple interest at an annual rate of i, then I t = i⋅P .
• If the account earns compound interest at an annual effective rate of i, then I t = i⋅A( t − 1) .

Example 1.12 Steven deposits 500 into Fund X and 500 into Fund Y at time 0. Fund X earns simple interest at
an annual rate of 6%. Fund Y earns compound interest at an annual effective rate of 6%. 
Calculate the total amount of interest that Steven earns during the fourth year.
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1.21.2 EFFECTIVE RATES OF INTERESTEFFECTIVE RATES OF INTEREST

In the previous section, we defined the concept of an “annual effective rate of interest”. Such an interest rate was
defined specifically for use when working with compound interest. It turns out, however, that we can generalize
the term “effective rate of interest” in ways that allow it to be applied to situations involving any accumulation
functions, not just those associated with compound interest. We will also discuss effective rates of interest over
non-annual periods. 

Annual Effective Rate For a Given Year

Assume that an investment grows according to some accumulation function a(t ) . The annual effective rate of
interest during a given year measures the percentage growth in an account during that specific year. We will
denote the effective annual rate during year t by it . It is important to note that year t runs from time t−1  to time
t . Formulas for it  are provided below. 

Annual Effective Rate During Year t

• Assume that an investment grows according to an accumulation function a(t ) .

• The annual effective rate of interest during year t is given by: it =
A(t) − A(t − 1)
A(t − 1)

.

• It can be shown that it  can also be calculated using the formula: it =
a(t ) − a(t − 1)
a(t − 1)

.

Example 1.13 An account earns interest according to the accumulation function a(t) = e0.01 t
2

.
a) Find i6 , the annual effective rate of interest during year 6.
b) Find i7 , the annual effective rate of interest during year 7.
c) Find i8 , the annual effective rate of interest during year 8.

Assume that an account earns compound interest at  an annual effective rate of  i.  It can be shown that  it  is
constant for such an account, and in fact it = i  for any t. This illustrates that the phrase “annual effective rate” is
consistent between the definition presented here and the one provided for compound interest. In fact, it  can be
thought of as the rate of growth in an account over a one year period  assuming that growth was the result of
accumulation by compound interest. 

Although  it  is constant in the case of compound interest, it is a decreasing function of  t when working with
simple interest. This fact is demonstrated in the following example. 

Example 1.14 An account earns simple interest at an annual rate of 10%.  

a) Show that it =
0.1

0.1 t + 0.9
. 

b) Find it  during each of the first five years. 
c) During what year is it  first less than 5%?

Calculator Tip: Parts (b) and (c) in Example 1.14 can be easily solved using the “table” function of the TI-30XS
calculator. I recommend reading about this function in the calculator manual. It can be very useful. 
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Annual Effective Rate Over a Period 

Assume that an investment grows according to an accumulation function  a(t ) .  The  annual effective rate of
interest during a t year period is defined to be the equal to the annual effective rate of compound interest that
would have produced the same amount of growth during that same period of time. 

Annual Effective Rate During a t Year Period

• Assume that an investment grows according to an accumulation function a(t ) .

• The annual effective rate of interest during the first  t years can be found by solving for i  in
the following equation:  (1+ i )

t
= a (t) .

The annual effective rate of interest during a period is  found by assuming that total amount of growth seen
during that period was the result of compound interest.  

Example 1.15 An account earns interest according to the accumulation function a(t) = e0.01 t
2

. 
a) Find the annual effective rate of interest over the course of the first 4 years. 
b) Find the annual effective rate of interest over the course of the first 8 years. 

Example 1.16 An account earns simple interest at an annual rate of 10%. 
a) Find the annual effective rate of interest during the first 5 years.
b) Find the annual effective rate of interest during the first 10 years. 

Compare the results of the next example to the answer in Example 1.9.

Example 1.17 An account earns compound interest continuously at a rate of 8%. 
c) Find the annual effective rate of interest during the first 5 years.
d) Find the annual effective rate of interest during the first 10 years. 

The annual effective rate over a period of several years can be thought of as a sort of average of the annual
effective  rates  for  each  of  the  years  during that  period.  The  average  is  not,  however,  a  standard arithmetic
average, as illustrated in the next example. 

Example 1.18 An account earns 5% in year 1, 3% in year 2, and 7% in year 3. Find the annual effective rate of
interest earned over the course of the three years.
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1.31.3 PRESENT VALUE AND CURRENT VALUEPRESENT VALUE AND CURRENT VALUE

Present Value

As mentioned in Section 1.1, the inherent value of a payment depends in part on when the payment is received. If
we would like to compare the value of two payments occurring at different times, then we need to select a specific
time and use an accumulation function to determine the value of each of the two payments at this particular time.
As we will see later, the particular time t at which we  value the payments is somewhat arbitrary. However, it is
often convenient to determine the time value of the two payments at time t=0 . The time value of a payment at
time t=0  is called the present value (PV) of the payment. 

Present Value (PV) for General Accumulation Functions

• Assume you are provided an accumulation function a(t) .

• The present value of a payment of 1 occurring at time t is given by PV =
1
a( t)

. 

• The present value of a payment of K occurring at time t is given by PV =
K
a( t )

. 

Let PV be the the present value of a payment K due at time t. The value PV can be interpreted in several ways:

• An investment of PV at time 0 would grow to an amount of K at time t under the effects of a(t) .
• If a loan of PV is made at time 0 and accumulates interest according to the accumulation function a(t) ,

then K is the amount that will be owed to the lender at time t.
• According to the accumulation function a(t) , a payment of  PV at time 0 has the same time value as a

payment of K at time t. 
• If  an  individual  can  readily  borrow  and lend money  that  will  accumulate  interest  according  to  the

accumulation function a(t) , then they will (in theory) place the same value on a payment of PV at time 0
as they would a payment of K at time t. 

Example 1.19 Given the accumulation function a(t ) = (1+ 0.1 t )
2 , find the present value of a payment of 1000

at the end of four years. In other words, determine the amount that would need to be invested
at time 0 in order for the investment to grow to 1000 at the end of four years. 

The process of “moving a payment back in time” in order to find its present value is called discounting. Recall
that the process of “moving a payment forward in time” to find its future value is called accumulating. 
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Present Value for Compound Interest

Note that in order to accumulate forward t years under compound interest, then we simply multiply the original
principal by a certain accumulation factor t times. The accumulation factor is equal to (i+i )  in the case of annual
compounding and eδt  for continuous compounding. It follows that if we want to discount a payment at time t
back to time 0, then we simply need to divide by this factor  t times. This is equivalent to multiplying by the
reciprocal  of  the  accumulation  factor  t times.  When working  with  compound  interest,  we  will  refer  to  the
reciprocal of an accumulation factor as a present value factor. 

Present Value (PV) for Compound Interest

• Assume an  account  earns compound interest  (either  annually,  or  continuously).  We will
define the present value factor, denoted by v, as follows:

◦ Annual Compounding:  Let v =
1

1 + i
.

◦ Continuous Compounding: Let v = e−δ .
• In either case, the PV of a payment of K at time t is given by PV = K vt .

When working with compound interest, it is important to remember the following facts:

• Multiplying the value of a payment by an accumulation factor (1+ i )  or eδ  accumulates by one year, or
in other words, determines the time value of the payment one year in the future. Multiplying by the
accumulation factor n times carries the value of the payment forward n years. 

• Multiplying the value of a payment by the present value factor  v discounts the payment by one year.
That is, it determines the time value of the payment at a time one year earlier. Multiplying by the present
value factor n times discounts the payment by n years. 

Example 1.20 Assuming an annual effective interest rate of 8%, which of the following payments has a larger
present value: A payment of 120 at time 4, or a payment of 150 at time 7?

Calculator Tip: It is often the case that you will need to use the same present value factor multiple times in the
same problem. For such problems, it can be convenient first calculate v, and then store it in one of the calculator
registers, such as x. After doing so, if you wanted to calculate the PV of, for example, a payment of 70 at time 8,
you would enter:  70 x8 .
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Accumulating Over General Periods (The Delayed Deposit Trap)

Recall that  a(t)  was said to provide the factor by which an account grows in the  t years immediately after
depositing the initial deposit or loan. This statement assumes that the initial transaction took place at time 0. In
other words, a(t)  does not provide the accumulation factor for an arbitrary t year period, but instead one that
begins at time 0. 

Assume  t 1< t 2 . Given an accumulation function  a(t) , if we wish to accumulate a payment of  P occurring at
time t 1  forward to time t 2 , we first discount the payment to time 0 to obtain a present value of P / a ( t1) . We
then accumulate  this  PV forward to  time  t 2  to  obtain  an  accumulated  value  of  P⋅a (t 2) / a (t 1) .  The  factor
a ( t 2) / a ( t1)  describes the growth during the period t ∈ [t1 , t 2 ] . We will denote this quantity by a(t 1 , t 2) . 

Accumulating Over General Periods

• Let a(t )  be an accumulate function and let t 1< t 2 . 

• Define a(t 1 , t 2)  by a(t 1 , t 2) =
a (t 2)
a ( t1)

.

• Assume an account has a value of  P at time  t 1 . The accumulated value of this account at
time t 2  is given by P⋅a(t 1 , t 2) .

Example 1.21 The value of an account grows according to the accumulation function a(t ) = (1+ 0.1 t )
2 . The

account is worth 2000 at the end of the year 3. Find the value of the account at the end of year 7.

Example 1.22 A fund grows according to the accumulation function a(t) = 1 + 0.05 t 2 . A deposit of X is made
into the account at time 6. Determine the number of years required for the value of the deposit
to double.

Note that  the situation is  much simpler  when working with compound interest.  It  can be shown that  when
working with compound interest, the accumulation factor during ANY t year period will be equal to (1+ i )

t . For
all  other  accumulation  functions,  one  must  apply  the  accumulation  factor  a(t 1 , t 2) = a (t 2) / a (t 1)  when
accumulating over a period that does not begin at time 0. 

Example 1.23 The value of an account accumulates interest an an annual effective rate of 7%. The account is
worth 2000 at the end of the year 3. Find the value of the account at the end of year 7.
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Present Value at a Specified Time (Current Value)

It is often necessary to discount a payment to a time other than 0. Assume that t 1< t 2 . To discount a payment of
K occurring at time t 2  back to time t 1 , we divide K by the accumulation factor a(t 1 , t 2)  to obtain a discounted
value of K⋅a ( t1) / a ( t2) . This discounted value is referred to as the present (or current) value at time t 1  of the
payment, and can be interpreted as the amount that must be invested at time t 1  for the account to be worth K at
time t 2 . 

Present Value at a Specific Time 

• Let a(t )  be an accumulate function and let t 1< t 2 . 

• Define a(t 1 , t 2)  by a(t 1 , t 2) =
a (t 2)
a ( t1)

.

• The present (or current) value at time t 1  of a payment of K occurring at time t 2  is given by

PV =
K

a (t 1 , t 2)
= K⋅

a (t 1)
a (t 2)

.

Any mention of present value that does not specify a particular time will refer to the present value at time 0. 

Example 1.24 Given  the  accumulation  function  a(t) = 1 + 0.05 t 2 ,  find  the  present  value  at  time  4  of  a
payment of 3250 occurring at time 10. 

Flexibility of a ( t1 , t 2)

Up to this point, we have only use the function a(t 1 , t 2)  in situations where t 1< t 2 . 

Assume that t 1< t 2 . We have established the following two facts in this section:

• To accumulate a payment from time t 1  to time t 2 , we multiply the payment by a ( t 2) / a ( t1) . 
• To discount a payment from time t 2  to time t 1 , we multiply the payment by a ( t1) / a ( t2) . 

In either case, we are multiplying by a factor of the form a (t ) / a (s ) , where s is the time of payment, and t is the
time that we are moving the payment to. We can unify these two rules into the following rule:

• Assume a payment of K occurs at time s. The value of the payment at time t equal K⋅a ( s ,t ) = K⋅
a (t )
a ( s )

.

This new rules works whether we are accumulating or discounting. 

Equivalent payments

It can be shown that if two payments have the same present value at a certain time t 1 , then they will have the
same present value at ALL times t. As a result, we consider the two payments to be equivalent with respect to the
accumulation function being used. 
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1.41.4 PRESENT VALUE OF A SEQUENCE AND METHOD OF EQUATED TIMEPRESENT VALUE OF A SEQUENCE AND METHOD OF EQUATED TIME

Present Value of a Sequence of Payments

We will define the present value of a sequence of payments to be equal to the sum of the present values of each of
the individual payments.  A single payment of this amount at time 0 is considered to have the same time value as
the entire sequence of payments. 

Present Value of a Sequence of Payments

• Let K1 , K 2 , …, Kn  be the value of payments  made at times t 1 , t 2 , …, t n , respectively. 

• The present value of the payments is given by  PV =
K 1

a (t 1)
+

K 2

a ( t 2)
+ ...+

K n

a (t n)
.

.

• Assuming compound interest, then we have that PV = K1 v
t 1 + K 2v

t 2 + ...+ K n v
t n .

Example 1.25 Assume an annual effective interest rate of 5%. Find the present value of the following sequence
of payments: 100 at time 2, 300 at time 4, and 250 at time 5.

The answer in Example 1.25 is 533.40. There are several useful ways in which one can interpret this value:
• Assume that a loan of 533.40 is made at time 0 at an annual effective rate of 5%. If the borrower makes

payments of 100 at time 2, 300 at time 4, and 250 at time 5, then the loan will be completely paid off after
the last payment. It should be noted that this is but one of many possible ways to repay such a loan. Any
sequence of payments with the same present value would represent a valid repayment plan for this loan. 

• Assume that  533.40 is  invested at  time 0 at  an annual  effective  rate  of  5%.  This  deposit  could fund
withdrawals of 100 at time 2, 300 at time 4, and 250 at time 5. After the withdrawal at time 5, the account
would be empty. 

• Assuming an annual effective interest rate of 5%, a payment of 533.40 has exactly the same time value as
the entire sequence of payments described in the problem. 

Example 1.26 At an annual effective interest rate of  i, the following two sets of payments described below
have the same present value, P. Find P. 

i) A payment of 140 at the end of year one, and a payment of 140 at the end of year four.
ii) A payment of 200 at the end of year three, and a payment of 200 at the end of year six. 

We will occasionally encounter problems in which we are asked to consider two or more possible payment plans
for a loan. Such a situation could occur if the borrower misses payments and thus requires a new repayment plan
to be developed,  or if  the borrower decides to repay the loan early. The key to solving such problems is  to
remember that any sequence of payments whose present value is equal to the loan amount will represent a  valid
repayment plan. 
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Example 1.27 Elbert borrows 2400 at an annual effective interest rate of  i. He intends to repay the loan by
making a payment of 1800 after three years, and another payment of 1327.63 after six years.

Elbert pays the first payment as normal. At the end of the fourth year, Elbert decides to repay
the loan by paying off the remaining balance of the loan, which is equal to K. Find K. 

It is possible that when renegotiating a loan, there will be additional penalties incurred by the party wishing to
renegotiate. Such penalties can have an effect on the annual effective rate ultimately realized by the loan. 

Example 1.28 Assume that in the previous example, Elbert is required to pay an early payment penalty of 50
along with his second payment of  K.  Use the  table function of the TI-30XS to estimate the
annual  effective  interest  rate  actual  paid by Elbert  when the penalty  is  taken into  account.
Round your answer to three decimal places. 

Example 1.29 An account earns interest at an annual effective interest rate of  i. Deposits are made into the
account as follows: 200 is deposited at time 0, 300 is deposited at time n, and 500 is deposited at
time 2n. The accumulated value of the fund at the end of the tenth year is 1512.12. 

Given that vn = 0.8209 , find i.

Present Value of a Sequence of Payments at Time t 1

As with individual payments, it  is possible to value a sequence of payments at any given time  t 1 .  Doing so
would produce the value of a payment that, if paid at time  t 1 , would have the same time value as the given
sequence. There are two equivalent methods we can use to find the present (or current) value of a sequence at
time at time t 1 .

Present Value of a Sequence of Payments at Time t 1

The present (or current) value at time t 1  of a sequence of payments can be found by using either of
the following (equivalent) methods:

1. Calculate the present value of the sequence at time 0. Accumulate the resulting present value
forward to time t 1 .

2. Calculate the current  value at  t 1  of  each of the payments  separately,  and then sum the
results. Payments occurring prior to time t 1  will need to be accumulated forward, whereas
payments occurring after time t 1  will need to be discounted backward in time. 

It is  important to know that the two methods above produce equivalent results.  However, I would generally
recommend using the second method to calculate current value of a sequence.  

If two sequences of payments have the same present value at time 0 (and thus at all times t) then we will consider
them to be equivalent. Equivalent sequences will have the same time value. Two equivalent sequences can be
viewed as both being valid repayment plans for the same loan. 
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Example 1.30 Dana and Ed each take out loans of the same size. The loans collect interest at  an effective
annual rate of 4.5%. Dana plans to pay off her loan by making a payments of 100 at the end of
years n , n+1 , n+2 , and n+3 . Ed agrees to repay his loan with a single payment of P at the
end of year n+1 . Find P. 

Example 1.31 Morty borrows an amount of L at time 0. The loan is charged interest at an annual effective rate
of 5%. According to the original terms of the loan, Morty is required to make payments of 100 at
the end of each of the first four years, at which point the loan will be repaid. 

Morty instead pays the loan off early by making a payment of 100 at the end of year 1, 125 at the
end of year 2, and a payment of X at the end of year 3. Find X. 

Method of Equated Time

Assume that n  payments of P1 , P2 , ... , Pn  are made at times t 1 , t 2 , ... , t n , respectively. The method of equated
time provides an estimate t̄  of the time at which a single payment of P1 + P2 + ...+ Pn  has same present value
as the original series of payments. The estimate t̄  is calculated as a weighted average of the times at which the
payments are made, with the weights provided by the size of the payments. 

Method of Equated Time

• Assume that n  payments of P1 , P2 , ... , Pn  are made at times t 1 , t 2 , ... , t n , respectively.

• Let t̄ =
P1 t1 + P2t 2 + ...+ Pn t n
P1 + P2 + ...+ Pn

.

• The time t̄  provides an approximation for the time at which a payment of P1+P2+...+Pn
would be equivalent to the given sequence.

Note that t̄  is just an estimate. If we want to know the exact time t  at which as single payment in an amount of
P1 + P2 + ...+ Pn  has the same present as the original series of payments, then we would need to solve the

equation (P1 + P 2 + ...+ P n)v
t
= P1 v

t1 + P2 v
t 2 + ...+ Pn v

t n .

Example 1.32 Payments of 300, 500, and 200 are made at the end of years two, four, and seven, respectively. 

a) Use the method of equated time to estimate the time at which a single payment of 1000
would be equivalent to the described sequence of payments. 

b) Assuming an annual effective interest rate of 6%, determine the actual time when a
single payment of 1000 would be equivalent to the given sequence. 

Example 1.33 John borrows  P at  an annual  effective  rate of  5%.  He agrees  to  repay the  loan by making
payments of 200 at the end of year 1, 250 at the end of year 2, and X at the end of year 4. 

Using the method of equated time, we determine that John could have also repaid the loan by
making a payment of 450+ X  at approximately time t = 2.625 .

Find X. 
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1.51.5 NOMINAL RATES OF INTERESTNOMINAL RATES OF INTEREST

Effective Periodic Rates

Up to this point, we have placed an emphasis on using years as a unit of time. Annual effective rates measure the
growth over the course  of a year,  and our time variable  t is  always measured in  years.  Although years  are
generally convenient to work with, there is no reason why a year must be the default unit of time. There are many
types of investments that will accumulate interest every six months, as well as those that accumulate interest
every month. When working with such types of investments, it may make sense to use six month or one month
periods as our default unit of time. If we are using something other than years as our default unit of time, then it
is usually convenient to work with non-annual effective rates that measure the growth over such a period of time.

Effective Periodic Rates for Compound Interest

• Define an m-thly period to be a length of time equal to 1 / m  years. 
• There are m such periods during each year. 
• Assume an account earns compound interest. 
• We will define the effective m-thly rate to be the rate of growth for the account during each

m-thly period. When the length of the period is clear, then we sometimes refer to this rate as
the effective periodic rate. 

• Assume that P is invested into an account earning compound interest at an m-thly effective
rate of j. The value of the account after N periods is P (1+ j )

N

As hinted at  in  the box above,  we will  generally use  j (or  sometimes  k)  to  refer  to  an  m-thly effective  rate,
reserving i specifically for annual effective rates. 

We assign special names to m-thly rates for certain values of m:
• If m = 2 , we will refer to an effective m-thly rate as an effective semi-annual rate. 
• If m = 4 , we will refer to an effective m-thly effective rate as an effective quarterly rate. 
• If m = 12 , we will refer to an effective m-thly effective rate as an effective monthly rate. 

Example 1.34 Assume an account earns compound interest at an effective monthly rate of 1%. An amount of
250 is deposited into an account. Find the value of the account after 1.5 years. 

Nominal Rates of Interest

It is standard practice when stating an m-thly rates to scale the rate to a full year by multiplying it by m. Such a
rate is called a nominal annual rate compounded (or convertible) m-thly, and is denoted by i(m) . As we will soon
see,  i(m)  is something different from an annual effective rate. We can calculate the annual effective rate for a
problem involving nominal rates of interest, but the rate i will differ slightly from the value of i(m) .

When encountering a problem that uses a nominal rate i(m) , first step is almost always to divide the nominal rate
by m to obtain an effective periodic rate, and then move forward working on an m-thly basis. 
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Nominal Annual Rates of Interest

• The nominal annual interest rate compounded (or convertible) m-thly is denoted by i(m) .

• Given i(m) , the effective periodic rate is given by j = i(m)

m
.

• The effective annual rate i  can be found by solving the equation (1+ i ) = (1 + j )
m .

It is important to remember that nominal rates are simply a means of indirectly reporting the effective periodic
rates. Nominal rates should almost never be used directly to calculate anything other than j .

Pay very careful attention to whether annual rates provided to you in a problem are nominal or effective. A very
common mistake is to treat a nominal rate as an effective annual rate, or vice versa. 

Example 1.35 Assume an account earns compound interest at an effective monthly rate of 1%. 
a) Find the nominal annual rate, i(12 ) .
b) Find the annual effective rate, i .

Example 1.36 A loan of 3500 collects interest at a nominal rate of i(4) = 5% . The loan is repaid with a single
payment after 28 months. Find the size of the payment. 

When asked to determine a nominal rate, you should start by finding the effective periodic rate and then scaling
to a nominal annual rate by multiplying by m. 

Example 1.37 A loan of 2400 collects interest at a nominal rate of i(12 ) = r% . The loan is repaid with a single
payment of 3085.12 after 3 years. Find r. 

Example 1.38 Joe  and  Mick  simultaneously  make  investments  into  different  funds.  You  are  given  the
following information about the investments:

• Joe's fund earns interest at a nominal rate of 8% convertible quarterly. 
• Mick's fund earns interest at a nominal rate of 6% compounded every six months. 
• Joe invests 50 more than Mick. 
• At the end of 5 years, the value of Joe's fund is twice the value of Mick's fund. 

Determine the size of Mick's initial investment. 

Although we will generally reserve the symbol i to refer to an annual effective rate, it does occasionally show up
in  problems in  reference  to  nominal  rates.  It  is  important  to  read the  problems carefully  to  make sure  you
understand what type of rates are being used. 

Example 1.39 Steve and Tony each make investments  at  the  same time.  Steve invests  K into  a  fund that
accumulates interest at a nominal annual rate of i, convertible quarterly. Tony invests 2K into a
fund that earns simple interest at an annual rate of i. Steve and Tony earn the same amount of
interest during the last quarter of the sixth year. Find i. 
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Equivalent Rates

We have seen several ways of expressing interest rates for compound interest problems. We have worked with
annual effective rates, continuously compounded rates, and nominal annual rates. These different types of rates
are  simply  different  ways of  expressing the  same type of  growth.  Every  nominal  rate  has  a  unique annual
effective rate that will produce the same growth. There will also be a unique continuously compounded rate that
produces the same growth. 

We say that two rates are equivalent if they have the same annual effective rate. Equivalent rates will produce the
same accumulation factor over periods of equal length. This observation is useful for finding equivalent rates. For
instance, a nomimal rate  i(2)  and a continuously compounded rate  δ  are equivalent if they produce the same
accumulation over the course of one year, and thus satisfy the equation: (1 + i(2) / 2)

2
= eδ

As an example, consider the nominal annual rate i(2) = 6% . This nominal rate corresponds to an effective semi-
annual rate of j = 3% . The equivalent annual effective rate can be found by solving (1.03)

2
= 1+i , which yields

i = 6.09% . We can calculate the force of interest to be δ = 5.9118%  by solving the equation (1.03)
2
= eδ t . The

rates  i(2) = 6% ,  j = 3% ,  i = 6.09% ,  and  δ = 5.9118%  all  describe  the  same  rate  of  growth,  and are  thus
considered to be equivalent.

Example 1.40 Fund A collects interest at a nominal annual rate of 10% convertible quarterly. Fund B collects
interest at a nominal annual rate of r% convertible semiannually. The rates for the two funds are
equivalent. Find r. 

It can seem overwhelming to work with so many different types of rates when they are just different ways of
expressing the same thing. However, each type of rate we have considered has practical uses. 

Compounding Periods Less Frequent than One Year

It  is  possible (though rare) to  encounter  compound interest  problems in  which interest  is  compounded less
frequently than once a year. For example, a problem might state that interest is compounded once every two
years, every three years, etc. In such problems, the rate will generally be expressed as an nominal annual rate in
which the rate has been scaled down to a year. Although this notation is nonstandard, it would be consistent to
denote a nominal rate for an account that compounds interest every M  years as i(1 /M ) . 

For instance, assume that an account accumulates interest at a nominal annual rate of 5%, compounded every
three years. Then  i(1 /3) = 5% . The effective three-year rate would then be  j = 15% .  The annual effective rate
could be found by solving the equation (1+ i )

3
= (1.15) . Doing so yields i = 4.769% .

Example 1.41 An account earns interest at a nominal annual rate of i(1 /2) = 10 % compounded every 2 years.
a) Find the effective 2 year rate.
b) Find the value of an investment of 100 after six years.
c) Find the value of an investment of 100 after three years.
d) Find the effective annual rate.
e) Find an equivalent nominal semiannual rate.
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Example 1.42 The interest rate on a four year investment varies from year to year as follows:
i) During year 1, the fund earns an effective annual rate of 7%.
ii) During year 2, the fund earns a continuously compounded rate of 8%.
iii) During year 3, the fund earns a nominal annual rate of 9% compounded semiannually.
iv) During year 4, the fund earns a nominal annual rate of 5% convertible every two years.

Determine the effective annual rate of interest over the four year period. 
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1.61.6 RATES OF DISCOUNTRATES OF DISCOUNT

Rates of Discount

We have already seen several different methods of representing a rate of compound interest. In this section, we
will learn about one more type of rate, called a discount rate. 

When calculating the percentage difference between two values, we will obtain different results depending on
which of the two values we use as the “base” value. For example, we can say that 150 is 50% more than 100, but it
would also be correct to say that 100 is (roughly) 33% less than 150. Put another way:

• Changing from 100 to 150 represents a 50% increase.
• Changing from 150 to 100 represents a 33% decrease.

Whereas interest rates are rates of increase, discount rates represent rates of decrease. 

Rates of Discount

• Assume an account grows according the the accumulation function a(t) .

• Recall that the annual effective rate of interest during year t is given by it =
a(t) − a(t − 1)
a(t − 1)

.

• The annual effective rate of discount during year t is defined as d t =
a(t ) − a(t − 1)

a(t )
.

Example 1.43 Assume a fund is worth 80 at the beginning of year three and is worth 100 at the end of year
three. Find the effective annual rates of interest and discount during year three. 

Discount Rates For Compound Interest

We have seen in the past that the annual effective rate of interest  it  can vary over time when working with a
general  accumulation function  a(t) .  The same is  true  for  discount  rates  d t .  However,  when working with
compound interest, both of these rates are constant. As usual, let i represent this constant annual effective rate of
interest.  We will  now use  d to denote the constant  annual effective rate of discount.  There are many useful
relationships between i, d, and v. 

Using the formulas above, we can derive a relationship for between the rates i and d. The derivation is as follows:

d =
(1 + i )

t
− (1 + i )

t−1

(1+ i )
t

= 1− 1
1+ i

=
1 + i
1 + i

−
1
1 + i

=
1 + i− 1
1+ i

=
i

1 + i

One of the most important aspects of the discount rate is its relationship with the present value factor, v. A present
value factor of v = 0.97  corresponds to an interest rate of i = 0.0309278  (verify this on your own). We can use
the formula above to determine that the associated discount rate is d = 0.03 . This hits that d and v are related by
the expression v = 1− d . We can verify this fact as follows:

1− d = 1−
i

1 + i
=
1 + i
1 + i

−
i

1 + i
=
1+ i − i
1+ i

=
1
1 + i

= v
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We will now summarize what we know about discount rates for compound interest. We will also state a few
identities that we have not yet discussed, but can be useful at times. 

Identities Involving Discount Rates

The following identities hold true for i, d, and v. 

• i =
d

1− d
• d =

i
1 + i • v = 1 − d

• d = i v • i − d = i d •
1
d

−
1
i

= 1

Example 1.44 Find the annual effective interest rate i that is equivalent to an annual effective discount rate of
d = 8%. Also calculate the associated present value factor, v. 

Accumulating With Discount Rates

The expression v = 1 − d  tells us how to convert easily between discount rates and present value factors, but it
also gives us a means of accumulating using discount rates. If v = 1− d , then v t = (1− d )

t . It then follows that
a(t) = (1+ i )

t
= 1 / v t = v− t = (1− d )

−t . We state this result along with some related results below. 

Accumulating and Discounting 

Assume  that  an  account  earns  compound interest  at  an  annual  effective  rate  of  i.  Let  d be  the
equivalent rate of discount. 

• The accumulation function for the account can be written in either of the following forms
a(t) = (1+ i )

t  or a(t ) = (1− d )
−t

• To accumulate a payment forward one year, we can multiply it by 1+i  or divide it by 1−d .

• To discount a payment back one year, we can divide it by 1+ i  or multiply by 1− d .

Example 1.45 Find the present value of the following sequence of payments: A payment of 300 at the end of
year 1, a payment of 500 at the end of year 3, and a payment of 200 at the end of year 5. Assume
an annual effective discount rate of d = 6%. 

Example 1.46 An account earns a 4% annual effective rate of interest during year 1 and a 7% annual effective
rate of discount during year 2. Find the effective annual rate of interest during the 2 year period.
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Nominal Discount Rates

As with interest rates, discount rates can be expressed in terms of a non-annual period. Such non-annual periodic
discount rates are stated in the form of scaled nominal annual discount rates.  

Nominal Annual Rates of Discount

• The nominal annual discount rate compounded (or convertible) m-thly is denoted by d (m) .

• Given d (m) , the effective periodic rate is given by k =
d (m )

m
.

• The effective annual rate i  can be found by solving the equation (1+ i ) = (1− k )
−m .

Example 1.47 Helga invests 5000 into an account. The account earns a nominal annual discount rate of 8%
convertible quarterly during the first three years, and a nominal annual discount rate of 6%
convertible quarterly during all later years.

a) Determine the value of the account at the end of 8 years. 
b) Determine the annual effective rate of interest earned by the account during the first 8

years. 

Example 1.48 An investment of 1000 is made to a fund. The fund earns a nominal annual discount rate of r
convertible quarterly during the first year, and a nominal annual interest rate of  r during the
second year. The value of the account at the end of two years is 1185.34. Find r. 

Simple Discount Rates

It  is  also  possible  to  define  the  concept  of  simple  discount  rates.  With simple  interest,  we  assume that  the
accumulation factor scales linearly with time. With simple discount, we assume that it is, instead, the discount
factor that scales linearly with time. For example, a simple discount rate of 3% would result in a one year discount
factor of 0.97, a two year discount factor of 0.94, a three year discount factor of 0.91, and so on. The discount factor
will decrease by 0.03 for each additional year that you wish to discount. 

Rates of Simple Discount

• Let d  be an annual rate of simple discount. 
• The simple discount accumulation function defined by d is given by a(t) = (1− d t )

−1 . 

Example 1.49 An amount of P is loaned at a simple discount rate of 7%. The loan is repaid after 3 years with a
single payment of 1000. Find P. 

It should be noted that while annual effective interest rates and annual effective discount rates for compound
interest are two ways of expressing the exact same idea, the concepts of simple interest and simple discount are
quite different from one another. 
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1.71.7 ZERO-COUPON BONDS AND T-BILLSZERO-COUPON BONDS AND T-BILLS

Bonds

It is often necessary for corporations and governments (both local and federal) to borrow money in order to fund
projects. A corporation might need to borrow money in order to develop a new product, to build a new office
building, to acquire another company, or any number of other reasons. Governments often need to borrow money
to pay for  various social  programs,  or  to  fund new infrastructure  projects,  such as  building  roads,  bridges,
airports,  and stadiums.  When a  corporation  or  government  needs  to  borrow large  amounts  of  money,  they
generally borrow that money from the public in the form of bonds. The entity will split the amount they wish to
borrow into many individual bonds, which investors can purchase, thereby making a small loan to the entity.
When the bonds are issued, they include terms that describe how the debt will be repaid to the investor. 

Assume that a corporation needs to raise $410,000 to provide initial funding for a project they are pursuing. They
decide to do this by issuing 500 bonds. Each bond has a price of $820 and is repaid by the corporation with a
single payment of $1000 at the end of 10 years. If the corporation sells all 500 bonds, then they will have raised the
$410,000 they desired, and will settle their debt by paying a total of $500,000 in 10 years. In this scenario, the
corporation will be paying an annual effective rate of interest that is slightly higher than 2%. The purchasers of
the bonds will earn that same rate on their investments. 

The scenario detailed above is an example of a  zero-coupon bond. This means that the bond is settled with a
single  payment  made  by  the  borrower  at  some point  in  the  future.  Some bonds  will  make regular  interest
payments,  called  coupons,  at  regular  intervals  throughout  the  life  of  the  loan.  We will  restrict  our  current
discussion to zero-coupon bonds, but will discuss coupon-paying bonds in detail in a later section. When a bond
is repaid by the borrower, it is said to have matured. The amount repaid to the investor is called the  maturity
amount of the bond. 

Some short-term bonds (called T-bills)  are priced using simple interest or simple discount formulas.  We will
study T-bills later in this section. Unless you are told specifically that you are working with a T-bill, you should
assume compound interest is being used to price a bond. When working with such bonds, it is common to quote
their rates using nominal annual rates compounded semiannually. 

Example 1.50 A company issues a new zero-coupon bond. The bond is set to mature for 1000 in 15 years. The
bond is priced to yield its purchaser a nominal annual rate of 3% convertible semiannually.
Determine the price of the bond. 

Example 1.51 A city government issues a 30-year zero-coupon bond. The bond matures for 1000 and has a
price of 400. Determine the yield rate on the bond. Express your answer as a nominal annual
rate of interest compounded semiannually. 

Treasury Bills

The term  treasury bill,  or  T-bill,  refers  to  a short-term zero-coupon bond issued by the U.S.  and Canadian
treasuries. T-bills are available with terms of 4 weeks, 13 weeks, 26 weeks, or 52 weeks. T-bills differ from other
types of zero-coupon bonds in that they are not priced using compound interest formulas. U.S. T-bills are priced
using a variation of the simple discount formula, whereas Canadian T-bills are priced using the simple interest
formula. 
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United States Treasury Bills

Quoted rates for U.S. Treasury bills are determined using the simple discount accumulation function, which is
given by a(t) = (1− d t )

−1 . If  P is the price of the bond, F is the maturity amount, and d is the quoted discount
rate, then F = P⋅(1− d t )

−1  and P = F⋅(1− d t ) .

There is one unusual aspect of U.S. T-bills that we need to be aware of. The pricing formula for U.S. Treasury bills
assumes a 360-day year instead of a standard 365-day year. When working with (for example) a 4-week T-bill, one
would use t = 28 / 360  in the pricing formula. For a 26-week T-bill, one would use t = 182 / 360 .

United States Treasury Bills

• Assume a U.S. T-bill has a price of P, a maturity amount of F, and a quoted rate of d. 
• Let t be the term of the bond in years, assuming a 360-day year. 

• Then we have P = F⋅(1− d t ) .

• We can also show that d =
360

Days to Maturity
⋅
I
F , where I = F − P .

Example 1.52 A new U.S. Treasury bill has a price of 990 and matures in 26 weeks for 1000. Find the quoted
rate for the T-bill, as well as the annual  effective rate of interest paid by the bond. 

Example 1.53 A new U.S. Treasury bill matures in 13 weeks for 1000 and has a quoted rate of 2%. Find the
price of the T-bill. 

Canadian T-Bills

Canadian T-bills are priced using the simple interest accumulation function, and use a 365-day year. Formulas
related to Canadian T-bills are provided below. 

Canadian Treasury Bills

• Assume a Canadian T-bill has a price of P, a maturity amount of F, and a quoted rate of i. 
• Let t be the term of the bond in years, assuming a 365-day year. 

• Then we have F = P⋅(1 + i t ) .

• We can also show that i =
365

Days to Maturity
⋅
I
P , where I = F − P .

Example 1.54 A new Canadian Treasury bill has a price of 982 and matures in 52 weeks for 1000. Find the
quoted rate for the T-bill, as well as the annual  effective rate of interest paid by the bond. 

Example 1.55 A new Canadian Treasury bill matures in 4 weeks for 1000 and has a quoted rate of 3%. Find the
price of the T-bill. 
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1.81.8 FORCE OF INTERESTFORCE OF INTEREST

Definition of Force of Interest

When working with compound interest, whether compounded continuously, annually, or on some non-annual
basis,  the  effective  annual  interest  rate  is  the  same  over  any  two  periods  of  the  same  length.  For  general
accumulation functions however, we have seen that the annual effective interest rate can (and likely will) vary
when calculated over different periods of the same length. This fact is demonstrated in the next example. 

Example 1.56 A fund  grows  according  to  the  accumulation  function  a(t) = 1+0.06 t 2 .  Find  the  annual
effective interest rate during each quarter of the first year. 

In the previous example, the rate at which interest is being accumulated isn't just changing from one quarter to
the next, but is in fact changing from one instant to the next. In this section, we will introduce a mechanism for
discussing continuously changing rates of growth. This tool will be called the force of interest. 

Assume that we have an account whose value at time t is given by the amount function A(t) . We know from
calculus that  the  derivative  A ′(t )  provides the  instantaneous  rate  of  growth in  the  value of  the  fund.  The
quantity A ′(t)  provides a absolute growth rate, which is measured in units of currency per year. This is not a great
tool  for  measuring a  fund's  performance,  as  it  doesn't  take  into  account  the  current  value  of  the  fund.  For
example, assume we know that an account has an instantaneous absolute growth rate of  A ′(t ) = 50  units of
currency per year at time  t.  That relative rate of growth is much more substantial if  the current value of the
account is A(t) = 100  than if the current value is A(t ) = 2000 . 

Rather  than an absolute growth rate,  we would prefer  to work with a  relative  growth rate that  expresses  the
absolute growth rate as a proportion of the current value of the account. The expression A ′(t ) / A( t )  provides us
with such a relative growth rate. We will refer to A ′(t ) / A( t )  as the force of interest, and will denote it by δt .

Let a(t)  be the accumulation function associated with the amount function A(t) . Then A(t ) = P⋅a (t ) , where P
is the initial principal in the fund. Noting that A ′(t ) = P⋅a′ (t ) , we can show that δt= a ′(t ) / a(t)  as follows:

δt =
A′(t )
A( t)

=
P⋅a ′(t )
P⋅a(t )

=
a ′(t)
a(t)

Definition of Force of Interest

• Let A(t )  and a(t)  be the amount and accumulation functions for a fund, respectively. 

• The force of interest of the fund at time t is defined to be δt =
A′(t )
A( t)

=
a ′(t)
a(t)

.

Note that, in general, the force of interest is a function of t and will change continuously over time. 

Example 1.57 Find the force of interest  δt  for the accumulation function  a(t ) = 1 + 0.06 t 2 .  Calculate  δ0 ,
δ0.25 , δ0.5 , δ0.75 , and δ1 .
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Force of Interest as a Nominal Rate

The force of interest provides a means of measuring a continuously changing rate of growth associated with an
accumulation function  a(t) .  The actual  value of  δt  can be interpreted as a nominal annual rate of  interest
convertible continuously. To see that this is true, we will need to work with limits. 

Let m  be some positive number, and let Δ t = 1 /m . That is, Δ t  is a length of time equal to one mth of a year. Let
jt

(m)  equal the (non-annual) effective rate of interest during the period of time [t , t + Δ t ] . Then jt
(m)  is equal to

the amount of growth during this period divided by the value at the beginning of the period. That is:

jt
(m) =

a (t + Δ t ) − a (t )
a (t )

Now, let it(m)  be the nominal annual rate convertible m-thly, calculated over the period [t , t + Δ t ] . Then we have:

it
(m) = jt

(m)⋅m = jt
(m)⋅

1
Δ t

=
a (t + Δ t ) − a (t )

a (t )
⋅
1
Δ t

=
a (t + Δ t ) − a (t )

Δ t
⋅
1
a (t )

Now define it
( ∞)

 to be it
( ∞)

= lim
m→∞

it
(m)

. Note that as m approaches infinity, Δ t  approaches zero. We now have: 

it
( ∞)

= lim
m→∞ [ a (t + Δ t ) − a (t )

Δ t
⋅
1
a (t ) ] = lim

Δ t→0 [
a (t + Δ t ) − a (t )

Δ t ]⋅ 1
a (t )

= a ′(t )⋅ 1
a (t )

=
a ′(t )
a (t )

= δt

This verifies our earlier claim that δt  is essentially a nominal annual rate of interest convertible continuously. 

We will now consider additional examples related to the force of interest. 

Example 1.58 Find the force of interest δt  for each of the following accumulation functions.
a) a(t) = 1 + 0.08 t b) a(t ) = (1+ 0.01 t )

2

c) a(t) = (1.05)
t d) a(t) = e0.08 t

Example 1.59 The value of an account at time t is given by the amount function A(t ) = 2000 (1 + 0.05 t )
2 . 

a) Calculate the force of interest at the end of the first year. 
b) Find the time at which the force of interest is equal to 0.08.

Example 1.60 The  value  of  an  account  at  time  t is  given  by  A(t) = P t 2 + Qt + R .  You  are  given  that
A(0 ) = 200 , A(1 ) = 232 , and A(3 ) = 368 . Calculate the force of interest at time t = 0.5 .

Finding the Accumulation Function for a Given Force of Interest

We have seen how to find the force of interest for a given accumulation function a(t) . However, most problems
that you will encounter involving a force of interest will  provide you with  δt ,  from which you will  need to

reconstruct an accumulation function a(t) . To see how to do this, first observe that δt = a ′(t )/ a(t) =
d
dt
ln [a (t )] .

Switching to a dummy variable  r and then integrating from 0 to  t gives us  ∫0

t
δrdr =∫0

t d
dr
ln [a ( r) ] dr . We can

apply the fundamental theorem of calculus to the right hand side to obtain  ∫0

t
δrdr = ln [a (t )] . Exponentiating

both sides then gives us the expression a(t ) = e∫0

t

δ rdr .
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Finding an Accumulation Function Given a Force of Interest

• Given a force of interest  δt ,  we can find the associated accumulation function using the

formula a(t ) = e∫0

t

δr dr .

Example 1.61 An account earns interest according to the force interest δt =
0.2

1 + 0.1 t
, for t ≥ 0 .

a) Find a(t) .
b) Assume 50 is deposited at time 0. Find the accumulated value at time 6.
c) Find the present value of a payment of 200 at time 5.
d) Find the present value of a payment of 200 at time 5 and a payment of 100 at time 10.
e) An amount of P is deposited at time 0. The account is worth 500 at time 5. How much is

the account worth at time 8?

Example 1.62 An amount of P is deposited into each of two funds: Fund X and Fund Y. 

• Fund X accumulates at a force of interest given by δt =
t2

K
.

• Fund Y earns a nominal annual rate of interest of 10% convertible semiannually
 At the end of year 6, the accumulated values of the two funds are equal. Find K.

Finding Accumulation Functions Algebraically

Assume that you are provided with a force of interest that is written as a fraction where the numerator is equal to
the derivative of the denominator. That is, assume that  δt = f ′( t) / f (t )  for some function  f (t ) . Since  δt  is

defined  as  δt = a ′(t ) / a(t ) ,  it  would  be  tempting  to  assume  that  f (t ) = a (t )  in  this  situation.  That  is  not

necessarily true, however. Assume that  a (t ) = K ⋅ f (t )  for some constant  K.  Then  a ′(t ) = K⋅ f ′ (t ) ,  and thus
δt = a ′(t ) / a(t ) = f ′(t ) / f (t )  even though a (t ) ≠ f (t ) . It can, however, be shown that if δt = f ′( t ) / f (t ) , then
a (t ) = K ⋅ f (t )  for some constant K. The actual value of K can be determined using the property that a (0) = 1 .

Example 1.63 Find the accumulation functions associated with the following forces of interest.

a) δt= 0.04 / (1+0.04 t ) b) δt = 1 / (t + 8)

c) δt= 0.1 t / (1+0.05 t 2) d) δt = t / (4+0.5 t2)

Example 1.64 Phillip and Gary each deposit an amount P into separate funds. Phillip's fund earns a nominal
annual rate of discount of 8% convertible quarterly. Gary's fund accumulates interest at a force
of interest  δt = 1 / (t + 10) . After 6 years, Phillip's fund is worth 2500 and Gary's fund is worth
K. Find K. 
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Example 1.65 An  account  earns  interest  according  to  the  force  of  interest  δt = 2 k / (1+k t 2) .  The  annual
effective rate of interest earned by the account during year 6 is equal to 10%. Determine the
force of interest at end end of year 6. 

This algebraic method can, in theory, be used to find the accumulation function associated with any force of
interest.  However,  as  a  result  of  simplification,  the  force  of  interest  is  often  written  in  a  way  that  is  not
immediately recognizable as being in the form δt = f ′( t) / f (t ) . Consider the force of interest in Example 1.61.

To use this algebraic method on this problem, once would have to recognize that δt =
0.2

1 + 0.1 t
=
0.2 (1 + 0.1 t )

(1 + 0.1 t )
2 .

Force of Interest for Compound Interest

Consider the accumulation function  a(t) = (1+ i )
t ,  which is  associated with compound interest  with annual

compounding. Calculating the force of interest for this accumulation function gives  δt = ln (1+i ) .  Since  i is  a
constant, the force of interest is constant for any compound interest accumulation function. For that reason, we
will  drop the subscript  from  δt  when working with compound interest,  simply  stating that  δ = ln (1+i ) .  It
should be noted that the concept of force of interest for compound interest is exactly the same as the concept of a
continuous rate of compound interest. If we are given a constant force of interest δ , our accumulation function
could thus be written as a (t ) = eδ t .

Example 1.66 Fund X accumulates interest at a force of interest of δ = r . Fund Y earns simple interest at an
annual rate of  i = r . A deposit into Fund X will double in value over the course of 10 years.
Determine how long it would take a deposit into Fund Y to double in value. 

Example 1.67 The interest rate earned by an account varies each year, as follows:
• A nominal annual discount rate of 8% convertible quarterly is earned during year 1.
• A nominal annual interest rate of 6% convertible every 2 years is earned during year 2.
• A force of interest of 5% is earned during year 3.

Find the annual effective rate of interest during the three year period. 

Accumulating over General Periods

As discussed in Section 1.3, if we are not working with compound interest, we would use the accumulation factor
a(t 1 , t 2) = a (t 2) / a (t 1)  to accumulate over a period from time t 1  to time t 2 .

Example 1.68 An account accumulates at a force of interest  δt=
1

1 + t
,  t ≥ 0 . Assume 100 is deposited at

time 3. Find the value of the account at time 5.

Example 1.69 A fund earns interest at a force of interest given by δt =
0.06 t

1 + 0.03t 2
. A deposit of 200 is made

into the fund at time 0, and another deposit of 100 is made at at the end of year 5. 
a) Find the value of the fund at the end of year 8. 
b) Find the time t at which the value of the fund is equal to 1000. 
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