
CHAPTER 6 – Immunization

6.16.1 DURATIONDURATION

Assume we have initiated a project that will yield several cash inflows as well as several cash outflows at various
times. Suppose we value the project using an effective annual rate of interest i. For the project to be profitable at
this rate, the present value of the cash inflows and outflows must be positive. Interest rates can change over time,
resulting in changes in the present value of the cash flows. If interest rates change enough, it is possible that a
previously profitable venture will no longer be profitable. In the next few sections, we will study how changing
interest rates affect present values.

Price Sensitivity

Assume a bond is priced using an effective yield of i . Now imagine that the next day, the yield rate has changed
to i + Δ i , thus changing the value of the bond. The percentage change in the price of the bond resulting from
this change in the rate is  called the  price sensitivity of the bond. The price sensitivity of the bond depends
strongly on the term of the bond, as we will see in the next example.

Example 6.1 Complete the following problems.
a) Find the prices of 10 and 20 year zero-coupon 1000 par bonds. Assume i = 10% .
b) Find the percentage change in the prices of these bonds if the rate changes to i=9.8% .

In the previous example, the price sensitivity of the 20 year bond is roughly twice that of the 10 year bond. That is
no  coincidence.  For  zero-coupon  bonds,  the  price  sensitivity  for  a  given  change  in  i  is  approximately
proportional to the time until maturity of the bond. The situation for a series of multiple cash flows is a bit more
complicated to explain, and requires the introduction of the concept of “duration”.

Macaulay Duration

The Macaulay duration (or simply duration) of a series of cash flows  is the time-weighted average of the present
values of all of the cash flows. Formulas for the Macaulay duration are given below.

• The Macaulay duration of a general series of cash flows is given by MacD =
∑ (t⋅vt⋅CF t)

∑ (v t⋅CF t)
=

∑ ( t⋅vt⋅CF t)

P
.

• The Macaulay duration of a single cash flow occurring at t = n  is MacD = n .

Example 6.2 Find the  Macaulay duration  of  a  3-year  100-par  bond paying annual  coupons  of  10% and
yielding 8%. 

Macaulay Duration and Price Sensitivity

It can be shown that the Macaulay duration of a sequence of cash flows is equal to −P ′ (δ) / P (δ ) , where P (δ )  is
the present value (or price) of the sequence as a function of the force of interest δ . Thus, we can think of MacD
as being equal to the price sensitivity resulting from an instantaneous change in δ . However, we are more likely
to calculate prices using i  than δ . This observation leads us to the definition of “modified duration”.
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Modified Duration

We  define  the  modified  duration of  a  series  of  cash  flows,  denoted  by  ModD ,  to  be  equal  to  the  ratio

−P ′ (i ) / P (i ) . It can be shown that ModD =
∑ (t⋅v t+ 1⋅CF t )

∑ (v t⋅CF t )
, or equivalently ModD = v⋅MacD .

Summary of Duration Formulas

We summarize the formulas for Macaulay duration and modified duration below.

• MacD =
∑ (t⋅v t⋅CF t)

∑ (v t⋅CF t)
=

∑ (t⋅vt⋅CF t)
P

= −
P ′(δ )

P (δ )
= (1 + i )ModD

• ModD =
∑ (t⋅v t+ 1⋅CF t )

∑ (v t⋅CF t )
=

∑ (t⋅v t+ 1⋅CF t )
P

= −
P ′ (i )
P (i )

= v⋅MacD

Example 6.3 Find the modified duration of a 20 year bond paying annual coupons of 50 and maturing for
1000. Assume an annual effective yield of 4%. 

Approximating Change in Price

Assume the price of a series of cash flows is equal to P  when valued using an effective rate of i . We wish to
approximate the change in price Δ P  resulting from a change of Δ i  in the rate. We can rewrite the expression
ModD =−P ′(i ) / P (i )  as P ′ (i ) = −P (i )⋅ModD . Since P ′ (i ) ≈ Δ P / Δ i , it follows that Δ P≈−ModD⋅P⋅Δ i .

Example 6.4 Assuming an annual effective interest rate of i = 8% , an asset stream currently has a present
value of 2500. The modified duration of the asset stream is 12.6. Approximate the change in the
present value of this stream of payments if the interest rate suddenly increases to i = 8.5% .

Duration of a Perpetuity

The duration of a perpetuity can be calculated in much the same way as any other stream of payments. The
primary difference is that the sums involved will now be infinite sums. Consider the following example:

Example 6.5 A perpetuity makes payments of 4 at the end of each year. Assuming an annual effective interest
rate of i, the perpetuity has a duration of 32.25. Find the price of the perpetuity.

Duration of a Portfolio

Let A and B be two series of payments and let C be a third stream that combines the payments delivered by A and
B. The Macaulay duration of C is the price-weighted average of the durations of A and B. In other words:

• MacDC =
P AMacD A + P BMacDB

P A + P B
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6.26.2 CONVEXITYCONVEXITY

In Section 6.1, we defined modified duration of an asset with specified cash flows in terms of the derivative of the
price of that asset with respect to the interest rate. We now define convexity in a similar manner, instead using the
second derivative of the price with respect to the interest rate. Formulas for convexity are given as follows:

• Conv =
P ″(i )

P
=

∑ [ t⋅(t + 1)⋅v t+ 2
⋅CF t]

P

In the following two examples, the summation formula for convexity will probably be the most useful.

Example 6.6 An asset will make payments of 500, 200, and 300 at the end of years 3, 5, and 6, respectively.
Assuming an effective annual rate of 6%, calculate the convexity of this asset.

Example 6.7 A 4-year bond pays annual coupons of 6% and has an annual effective yield of 8%. Find the
modified duration and the convexity of this bond. 

In the next example, the derivative definition of convexity will be the easiest to apply. 

Example 6.8 A perpetuity makes payments at the end of each year. The first payment is equal to 5,  and
subsequent payments increase by 5 per year. Find the modified duration and convexity of this
perpetuity, assuming an annual effective yield of 4%.

Approximating Change in Price

In Section 6.1,  we used the relationship between  P ′ (i )  and modified duration to come up with a first-order
approximation for Δ P  as a function of Δ i . We can use Taylor series to develop a second-order approximation
by incorporating convexity into our formula. This yields the following approximation:

• Δ P ≈ P( i)⋅[−(Δ i )ModD +
1
2
(Δ i)2(Conv )]

  

Example 6.9 Assuming an annual effective interest rate of i = 4% , an asset stream currently has a present
value  of  5000.  The  modified  duration  of  the  asset  stream  is  5  and  its  convexity  is  40.
Approximate the change in the present value of this stream of payments if the interest rate
suddenly decreases to i = 3.8% .
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Convexity of a Portfolio

Let A and B be two series of payments and let C be a third stream that combines the payments delivered by A and
B. The convexity of C is the price-weighted average of the convexities of A and B. In other words:

• ConvC =
P AConv A + P BConvB

P A + P B

Example 6.10 Portfolio A has a present value of 320, a duration of 8.75, and a convexity of 80. Portfolio B has a
present value of 180, a duration of 12.5, and a convexity of 120. The two portfolios are combined
into a single portfolio. Find the duration and convexity of the new portfolio. 
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6.36.3 IMMUNIZATION IMMUNIZATION 

Assume a portfolio contains several cash inflows as well as several cash outflows. The net present value of such a
portfolio is obviously affected by the current effective rates. In fact, the NPV might be positive at one interest rate
and negative when calculated using a different rate. The effect that changing rates have on NPV poses a risk to
investors and financial institutions.  Such entities often employ strategies to minimize their exposure to these
interest  rate  risks.  In  this  section,  we  will  introduce  three  such  methods:  Redington  immunization,  full
immunization, and exact matching.

Redington Immunization

A sequence of cash flows is said to be in Redington immunization if the following three conditions hold:

1. The PV of the assets equals the PV of the liabilities. That is, PA (i ) = PL (i ) .
2. The duration of the assets equals the duration of the liabilities. Equivalently, PA ′(i ) = PL ′ (i ) .
3. The convexity of the assets is greater than the convexity of the liabilities. Equivalently, PA ″(i ) > P L″(i ) .

Redington immunization protects the investor from small changes in the interest rate. 

The first criteria ensures that the current NPV is zero. The second criteria guarantees that the NPV has a critical
point at the current value of i. The third criteria results in that critical point being a local minimum for the NPV.

If a set of cash flows satisfies the first two criteria of Redington immunization, it is said to be duration matched. 

Example 6.11 Two sets of liabilities are given below. Each set of liabilities is duration matched using 2-year
and 5-year zero coupon bonds. For each set of liabilities, find the par value of the bond that
need  to  be  purchased,  and then  determine  if  Redington  immunization  has  been  achieved.
Assume an annual effective yield of 5%. 

a) Liability of 500 at time 1 and another liability of 300 at time 6.
b) Liability of 500 at time 3 and another liability of 300 at time 4.

Example 6.12 A company has a liability portfolio with a present value of 600, a duration of 8, and a convexity
of 168. The company plans to duration match its liabilities using the following asset portfolios:

• Portfolio A, which has a duration of 10.25 and a convexity of 210
• Portfolio B, which has a duration of 6.5 and a convexity of K.

Find the smallest value of K that will achieve Redington immunization.
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Full Immunization 

A financial enterprise is said to be in full immunization if the following three conditions hold:

1. The PV of the assets equals the PV of the liabilities. That is, P A (i )= P L(i ) .
2. The duration of the assets equals the duration of the liabilities. Equivalently, PA ′(i ) = PL ′ (i ) .
3. There is one cash inflow before and after each cash outflow. That is, there no two consecutive cashflows

that are both liabilities.

Full immunization protects the investor from all changes in the interest rate.

Example 6.13 A liability of 1000 to be repaid at time 6 is fully immunized using an 8-year zero coupon bond
and an n-year zero coupon bond. The par value of the 8-year bond is 648.96. The current annual
effective interest rate is 4%. Find the par value of the n-year bond. 

Example 6.14 BusinessCorp has a liability of 500 due n years from now. They fully immunize the liability by
investing in a zero coupon bond that matures for 267 in n – 2 years, as well as a zero coupon
bond maturing for 238.2 in n + t years. The current annual effective rate of interest is 6%. Find t. 

Exact Matching (Dedication)

Another immunization strategy is to match every liability with an asset to be delivered at the same time and in
the same amount as the liability so that there is a net cash flow of 0 at all times. This strategy is called  exact
matching or dedication.

Example 6.15 A company has liabilities of 3500 at the end of year 1, 5000 at the end of year 2, and 6500 at the
end of year  3. The company exactly matches the liabilities by investing in the following bonds:

i) A one-year zero coupon bond with a yield of 2.5%.
ii) A two-year zero coupon bond with a yield of 3%.
iii) A three-year bond paying annual coupons of 5% and priced to yield 4%.

Find the total amount invested in the three bonds.

Example 6.16 Skyler has liabilities of 2000 due at the end of each of the next three years. She uses dedication
to match the liabilities by investing in the following bonds. 

i) A one-year bond paying 4% annual coupons. 
ii) A two-year bond paying 5% annual coupons. 
iii) A three-year bond paying annual coupons at a rate of r. 

At an annual effective yield of 6%, the price of the one-year bond was 1716.98. Find r.
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