Name: HW 1.4a Key

- 1. At an annual effective rate of 6%, the following two sets of payments have the same present value.
 - i) A payment of 240 at time 2 and a payment of 280 at time 8.
 - ii) A payment of 200 at time 3 and a payment of K at time 10. Find K.

[A] 396.41 B) 404.33 C) 412.26 D) 420.19 E) 428.12
$$V = V_{0} Q_{0}^{-1} = Q_{0} Q_{1} Q_{2} Q_{1}$$

$$240v^2 + 280v^8 = 200v^3 + Kv^{10}$$

 $K = 396.41$

- 2. You are given:
 - (i) The sum of the present values of a payment X at the end of 15 years and a payment of Y at the end of 33 years is equal to the present value of a payment of X + Y at the end of 19 years.
 - (ii) X + Y = 400
 - (iii) i = 4%

Calculate X. [1.a(i-v) #12]

$$X = 400$$
 (9) $0.55526X + 0.27409Y = 189.857$
 $X + Y = 400$ $0.27409X + 0.27409Y = 109.636$
 $0.28117 X = 80.221$

- 3. At an effective annual rate of i, i > 0, each of the following two sets of payments has present value K:
 - (i) A payment of 400 immediately, and another payment of 400 at the end of one year.
 - (ii) A payment of 441 at the end of 2 years, and another payment of 441 at the end of 3 years. Calculate K. [1.a(i-v) #06]

$$K = 400 + 400v$$
 $V = 441v^2 + 441v^3$
 $V = 441v^2 + 441v^3$
 $V = 441v^2 + 441v^3$

$$\sqrt{2} = \frac{400}{441}$$

$$\vee = 0.95238$$

- 4. At an annual effective interest rate of i, i > 0, the following are all equal:
 - (i) the present value of 3500 at the end of 2n years;
 - (ii) the sum of the present values of 6000 at the end of year t and 26,000 at the end of year 2t; and
 - (iii) 2240 immediately.

Calculate the present value of a payment of 17,500 at the end of year t + n using the same annual effective interest rate. [1.a(i-v) #05]

(id iii)
$$2240 = 3500 \sqrt{20}$$

 $\sqrt{20} = 0.64$
 $\sqrt{10} = 0.8$

(ii 4 iii)
$$2240 = 6000 v^{t} + 26,000 v^{2t}$$

 $26,000(v^{t})^{2} + 6000 v^{t} - 2240 = 0$
 $v^{t} = 0.2$

$$17,500v^{t+n} = 17,500v^{t}v^{n} = 2800$$

5. John borrows 800 from Jane at an annual effective rate of interest i. He agrees to pay back 800 after 9 years and 1,233.18 after another 9 years.

Instead of making the second payment as scheduled, John repays the outstanding balance 6 years after his first payment.

What is the amount of John's second payment? [1.a.(i-v) #09]

$$800 = 800 \, \text{V}^9 + 1233.18 \, \text{V}^{18}$$

$$1233.18(\sqrt{9})^2 + 800\sqrt{9} - 800 = 0$$

$$V = 0.93458 \rightarrow (and i=7\%)$$

$$800 = 800 \sqrt{9} + \times \sqrt{15}$$

 $\times = 1006.64$