HW 10.4 Key

- 1. Prices for a stock are modeled with a 2-period binomial tree. You are given the following information:
 - (1) Each period is 6 months.
 - (2) The stock's current price is 80
 - (3) u = 1.1 and d = 0.8.
 - (4) The continuously compounded risk-free rate is 4.5%.
 - (5) The stock does not pay dividends.

Find the price of a one year European call option with a strike price of 60. [20e 01]

- B) 22.27 C) 22.73 D) 23.66

$$h=\frac{1}{2} \quad F=\frac{4.5\%}{8=0}$$

$$Call: T=1, K=60$$

$$p^* = \frac{e^{0.0225} - 0.8}{1.1 - 0.8} = 0.7425$$

$$Call = [(p^*)^2(36.8) + 2p^*q^* 10.4] e^{-0.045}$$

= $[23.20]$

- 2. Prices for a stock are modeled with a 2-period binomial tree. You are given the following information:
 - (1) Each period is 6 months.
 - (2) The stock's current price is 140
 - (3) u = 1.2 and d = 0.8.
 - (4) The continuously compounded risk-free rate is 8%.
 - (5) The stock does not pay dividends.

Find the price of a one year European put option with a strike price of 145. [20e 02]

- B) 11.77
- C) 12.02
- D) 12.28
- E) 12.53

$$h = 1/2 \qquad F = 8\% \qquad 8 = 0$$

$$Put : T = 1, K = 145$$

$$P^* = \frac{e^{0.04} - 0.8}{1.2 - 0.8} = 0.6020$$

$$Put = \left[10.6(2)p^*q^* + 55.4(q^*)^2\right]e^{-0.08}$$

$$+ = [10.6(z) p*q* + 55.4(q*)^{2}] e^{-0.05}$$

$$= [12.79]$$

- 3. Prices for a stock are modeled with a 2-period binomial tree. You are given the following information:
 - (1) Each period is 6 months.
 - (2) The stock's current price is 180
 - (3) u = 1.2 and d = 0.6.
 - (4) The continuously compounded risk-free rate is 5%.
 - (5) The stock pays continuous dividends proportional to its price at a rate of 3% Find the price of a one year European put option with a strike price of 185. [20e 03]

- B) 35.63
- C) 37.00
 - D) 38.37
- E) 39.74

$$h=\frac{1}{2} \quad r=5\% \quad 8=3\%$$

$$Pu+: \quad T=1, \quad K=185$$

$$P^* = \frac{e^{0.01} - 0.6}{1.2 - 0.6} = 0.6834$$

$$P_{L+} = [55.4(2)p^{*}q^{*} + 120.2(q^{*})^{2}]e^{-0.05}$$

= $[34.26]$

- 4. Prices for a stock are modeled with a 2-period binomial tree. You are given the following information:
 - (1) Each period is 6 months.
 - (2) The stock's current price is 140
 - (3) u = 1.3 and d = 0.6.
 - (4) The continuously compounded risk-free rate is 7%.
 - (5) The stock pays continuous dividends proportional to its price at a rate of 6% Find the price of a one year American call option with a strike price of 105. [20e 04]

- C) 45.73 D) 47.49
- E) 49.25

236.6
$$h = 1/2$$
 $r = 7\%$ $8 = 6\%$

Am Call: $T = 1$, $K = 105$

109.2 $p^* = \frac{e^{0.005} - 0.6}{1.3 - 0.6} = 0.5786$

MVL = $\begin{bmatrix} 131.6 & p^* + 4.2 & q^* \end{bmatrix} = 0.035 = 75.23$

MVL = $\begin{bmatrix} 4.2 & p^* \end{bmatrix} = 0.035 = 2.35$

$$Call = [77p^* + 2.35q^*]e^{-0.035}$$

= [43.98]

5. Prices for a stock are modeled with a 2-period binomial tree. You are given the following information:

D) 13.77

E) 14.91

- (1) Each period is 6 months.
- (2) The stock's current price is 180

B) 12.62

(3) u = 1.2 and d = 0.8.

(A) 14.34

(4) The continuously compounded risk-free rate is 4.5%.

C) 13.19

(5) The stock pays continuous dividends proportional to its price at a rate of 1% Find the price of a one year American put option with a strike price of 175. [20e 05]

$$h=1/2 \qquad \Gamma=4.5\% \qquad \delta=1\%$$

$$Am \ Pu+: \ T=1 \ , \ K=175$$

$$P^* = \frac{e^{0.0175} - 0.8}{1.2 - 0.8} = 0.5441$$

$$MV_{u} = \begin{bmatrix} 2.2 \, q^{*} \end{bmatrix} e^{-0.0225} = 1.17$$

$$MV_{d} = \begin{bmatrix} 2.2 \, p^{*} + 59.8 \, q^{*} \end{bmatrix} e^{-0.0225} = 27.82$$

$$P_{u} + = \begin{bmatrix} 1.17 \, p^{*} + 31 \, q^{*} \end{bmatrix} e^{-0.0225}$$

$$= \begin{bmatrix} 14.44 \end{bmatrix}$$