HW 4.5 (a) Key

1. The following are the current prices of 1000 par-value, zero-coupon bonds:

Term to Maturity	Price	
1	944.9	_
2	X	
3	760.9	

If the one-year forward rate for year 2 (i.e., the one-year effective rate during year 2) is 5%, determine X. [9.a-b #031

$$944.9(1+5.) = 1000 \rightarrow 5. = 5.8313\%$$

$$\times (1+5, \chi_{1+1}) = 1000 \rightarrow \times = 899.90$$

2. The yield rate on a one year zero-coupon bond is currently 3.5% and the yield rate on a two year zero coupons bond is currently 5%. The Treasury plans to issue a two year bond with 5.5% annual coupons, maturing at 100 par value. Determine the yield-to-maturity of the two year coupon bond. [9.a-b #04]

$$S_1 = 3.5\%$$
 $S_2 = 5\%$

$$P = \frac{5.5}{1+5.1} + \frac{105.5}{(1+52)^2} = 101.0056$$

3. A one year \$1000 Treasury bond with 8% semiannual coupons sells for \$962.02. A one year \$1000 Treasury bill sells for \$888.32. Determine the forward price applicable to the six-month period starting six months from now, expressed as a nominal annual rate convertible semiannually. [9.a-b #05]

$$888.32(1+Sz)^2 = 1000 \Rightarrow Sz = 6.09997\%$$

$$962.02 = \frac{40}{1+51} + \frac{1040}{(1+52)^2} \rightarrow 51 = 4.802\%$$

$$(1+5)(1+f) = (1+52)^2 \rightarrow f = 7.414\% \rightarrow [14.828\%]$$

4. The following are the prices for zero-coupon bonds with par value of \$1000, maturing at par:

Term In Years	Price	
1	\$956.57	0 1 2 3
2	\$895.04	+ + + +
3	\$800.25	(t)
4	\$717.47	S 12
		

Determine the one-year forward rate for year 3 (i.e., the one-year effective rate during year 3). [9.a-b #06]

[A] 11.85% B) 12.40% C) 12.96% D) 13.52% E) 14.07%
$$895.04(1+5z)^2 = 1000 \rightarrow 5z = 5.7\%$$

 $800.25(1+5z)^3 = 1000 \rightarrow 5z = 7.71\%$
 $(1+5z)^2(1+f_z) = (1+5z)^3 \rightarrow f_z = 11.85\%$

5. You are given the following information about three zero-coupon bonds:

D ...

Bond	Price on	Maturity value On:		
	January 1, 2011	July 1, 2011	July 1, 2012	January 1, 2013
A	\$97	\$100		
В	\$140		\$150	
С	\$167			\$190
	<			12

Determine the forward rate for the period from July 1, 2012 to January 1, 2013, expressed as a nominal annual rate of interest convertible semiannually. [9.a-b #07]

A) 12.38% B) 11.61% C) 13.14% D) 13.91% E) 14.68%

$$140(1+5z)^{2} = 150 \implies 5z = 3.5098\%$$

$$167(1+5z)^{3} = 190 \implies 5z = 4.3948\%$$

$$(1+5z)^{2}(1+fz) = (1+5z)^{3} \implies f_{2} = 6.1876\%$$

$$12.38\%$$