## HW 8.4 (a) Key

1. The following premiums are for one-year European options for an underlying asset with a current spot price of

| Strike Price | Call         | Put   |
|--------------|--------------|-------|
| 130          | 32.29        | 6.57  |
| 140          | 26.20        | 10.04 |
| 150          | 20.99        | 14.39 |
| 160          | 16.62        | 19.58 |
| 170          | <b>13.03</b> | 25.55 |

The continuously compounded risk-free annual rate of interest is 4.5%. Find the cost of a 150-170 bull spread constructed using call options. [16 #03]

- A) 7.96
- B) -11.16
- C) 8.33
- D) -7.96
- E) 11.16



$$Cost = 20.99 - 13.03$$

$$= 7.96$$

2. The following premiums are for one-year European options for an underlying asset with a current spot price of \$180:

| Strike Price | Call  | Put   |
|--------------|-------|-------|
| 160          | 35.70 | 9.43  |
| 170          | 29.86 | 13.19 |
| 180          | 24.76 | 17.70 |
| 190          | 20.36 | 22.91 |
| 200          | 16.63 | 28.79 |
|              |       |       |

The continuously compounded risk-free annual rate of interest is 4%. Find the cost of a 180-200 box spread. [16 #04]

19.22



$$Cost = 24.76 - 17.70 + 28.79 - 16.63$$
$$= [19.22]$$

Note: PO of Spread is always 20  
So, 
$$Cost = PV(20)$$
  
=  $20e^{-0.04} = 19.22$ 

3. The following premiums are for one-year European options for an underlying asset with a current spot price of \$150:

| Strike Price | Call  | Put   |
|--------------|-------|-------|
| 130          | 31.87 | 6.77  |
| 140          | 25.80 | 10.31 |
| 150          | 20.63 | 14.75 |
| 160          | 16.30 | 20.03 |
| 170          | 12.75 | 26.08 |

The continuously compounded risk-free annual rate of interest is 4%. You construct a ratio spread using only 150, 160, and 170 strike call options.

The payoff for your spread is given below for several spot prices at expiration:

| Spot Price | Total Payoff |
|------------|--------------|
| 160        | 20           |
| 170        | 20           |
| 180        | 50           |

Find the cost of your ratio spread. [16 #05]

A) 46.91 B) 39.87 C) 42.22 D) 44.56 E) 49.26

$$S_T$$
  $K=150$   $K=160$   $K=170$ 
 $160$   $10$   $6$   $0$ 
 $170$   $20$   $10$   $0$ 
 $180$   $30$   $20$   $10$ 

Let: 
$$X = \#$$
 of  $K=150$  Calls  
 $Y = \#$  of  $K=160$  Calls  
 $Z = \#$  of  $K=170$  Calls

$$Cost = 2(20.63) - 2(16.30) + 3(12.75) = 46.91$$

4. The following premiums are for one-year European options for an underlying asset with a current spot price of \$200:

| Strike Price | Call  | Put    |
|--------------|-------|--------|
| 180          | 42.74 | (8.90) |
| 190          | 36.77 | 12.16  |
| 200          | 31.42 | 16.04  |
| 210          | 26.68 | 20.53  |
| 220          | 22.52 | 25.61  |

The continuously compounded risk-free annual rate of interest is 8%. Find the cost of a 180-210 collar. [16 #06]

- A) -17.78
- B) 22.21
- C) -19.26
- D) 17.78
- E) -22.21



$$Cost = 8.90 - 26.68$$
  
=  $[-17.78]$ 

5. The following premiums are for one-year European options for an underlying asset with a current spot price of \$140:

| Strike Price | Call  | Put     |
|--------------|-------|---------|
| 120          | 30.62 | 5.91    |
| 130          | 24.46 | 9.36    |
| 140          | 19.25 | (13.76) |
| 150          | 14.96 | 19.08   |
| 160          | 11.49 | 25.22   |

The continuously compounded risk-free annual rate of interest is 4%. Find the cost of a straddle constructed using at-the-money options. [16 #07]

- A) 33.01
- B) 5.49
- C) 34.36
- D) -33.01
- E) -5.49



$$Cost = 19.25 + 13.76$$
  
=  $33.01$