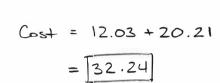
HW 8.4 (b) Key

1. The following premiums are for one-year European options for an underlying asset with a current spot price of

Strike Price	Call	Put
170	40.16	8.67
180	34.20	12.03
190	28.90	16.05
200	24.25	20.73
210	(20.21)	26.01

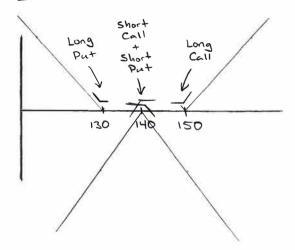

The continuously compounded risk-free annual rate of interest is 7%. Find the cost of a 180-210 strangle. [16 #08]

- A) 32.24
- B) 8.18
- C) 34.58

Long Call

210

- D) -32.24
- E) -8.18

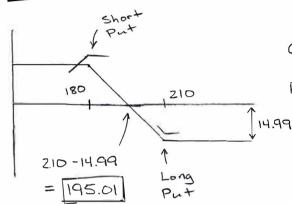

2. The following premiums are for one-year European options for an underlying asset with a current spot price of

Strike Price	Call	Put
120	31.42	5.57
130	25.20	8.86
140	(19.92>	13.09
150	C15.54	18.22
160	11.99	24.19

The continuously compounded risk-free annual rate of interest is 5%.

Find the cost of a butterfly spread constructed from a staddle using at-the-money options and a strangle using options that are out-of-the-money by \$10. [16 #09]

- B) 0.90
- C) -9.05
- D) 8.61
- E) -0.90


$$Cost = 8.86 - 19.92 - 13.09 + 15.54$$

$$= [-8.61]$$

Strike Price	Call	Put
170	40.16	8.67
180	34.20	12.03
190	28.90	16.05
200	24.25	20.73
210	20.21	(26.01)

The continuously compounded risk-free annual rate of interest is 7%. At a spot price at expiration of X, the profit from a 180-210 bear spread is 0. Find X. $\begin{bmatrix} 16-62 \end{bmatrix}$

- B) 193.99
- C) 196.02
- D) 195.00
- E) 196.01

4. The following premiums are for one-year European options for an underlying asset with a current spot price of \$150:

 Strike Price	Call	Put
130	33.14	6.18
140	26.99	9.50
150	<21.71	(13.68)
160	17.26	18.70
170	13.58	24.48

The continuously compounded risk-free annual rate of interest is 5.5%.

Find the range of spot prices at expiration for which a written straddle using at-the-money options has a profit greater than zero. [16-63]

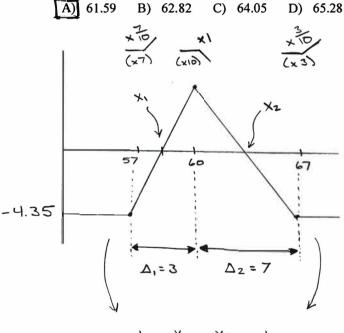
- A) Between 112.61 and 187.39 B) Between 141.97 and 158.03
- C) Between 114.61 and 185.39

- D) Less than 112.61 or greater than 187.39
- E) Less than 141.97 or greater than 158.03

$$Cost = 21.71 + 13.68 = 35.39$$

5. The option premiums below are for 3-month European options on Stock A, which is currently priced at \$60.

The continuously compounded rate of interest is 4%.


Stock A pays no dividends.

Strike Price	Call	Put
57	5.55	1.98
60	3.88	3.28
67	1.42	7.75

Using 3-month call options with strike prices 57, 60, and 67, Beth constructs an asymmetric butterfly spread using the smallest integer values of options available.

Let X_i represent the price of Stock A in 3 months that would result in a 0 profit for this strategy.

Calculate the mean (average) of all such X_i values. [16 A3]

$$Cost = 7(5.55) - 10(3.88) + 3(1.42)$$

= 4.31

$$= 4.31$$

 $= 4.31e^{0.01} = 4.35$

$$4.35$$
 $M=7$
 $M=3$
 $M=3$
 $M=3$

$$\frac{4.35}{d_1} = 7$$
 $\frac{4.35}{d_2} = 3$

$$X_1 = 57.62$$
 $X_2 = 65.55$

$$\frac{1}{2}(x_1+x_2) = \boxed{61.59}$$