HW 2.1 Key

(A)

B)

22%

19%

- 1. Townsville High School has official teams for two sports: baseball and soccer. You are given the following information regarding student participation in these sports:
 - 48% of students play baseball.
 - 38% of students play soccer.
 - 40% of students play neither sport.

Determine the percentage of students that play exactly one sport.

- 2. Townsville High School has three academic clubs: History, Math, and Science. You are given the following information regarding student participation in these clubs:
 - 27% of students participate in History Club.
 - 32% of students participate in Math Club.
 - 28% of students participate in Science Club.
 - 4% of students participate in all three clubs.
 - 39% of students participate in no clubs.

Determine the percentage of students that participate in more than one club.

C) 21%
C) 21%
C) 21%
D) 23%
E) 25%

H

$$A = 0.27$$
 $A = 0.32$
 $A = 0.28$
 $A = 0.39$
 $A =$

- 3. Assume that events A and B satisfy the following properties:
 - The probability of event A occurring is 1.4 times the probability of event B occurring.
 - The probability of at least one of the events occurring is 0.41.
 - The probability of both events occurring is 0.07.

Determine the probability of Event A occurring and Event B not occurring.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $O.41 = 1.4 P(B) + P(B) - 0.07$
 $O.48 = 2.4 P(B)$
 $P(B) = 0.2$
 $P(A) = 0.28$
 $P(A \cap B^{c}) = 0.28 - 0.07 = 0.21$

- 4. You are given the following information about events A, B, and C.
 - The probability of event A occurring is 0.57.
 - The probability of only event A occurring is 0.21.
 - Events B and C are mutually exclusive.
 - The probability of C occurring is 1.5 times the probability of B occurring.
 - The probability of none of the events occurring is 0.17.
 - The probability C occurring and A not occurring 0.13.

Find the probability of event B NOT occurring.

$$1.5y - 2 = -0.065$$
 $\Rightarrow 2.5y = 0.295$ $P(B) = x+y = 0.248$ $y + 2 = 0.36$ $y = 0.118$ $P(B^{c}) = 0.752$

5. You are given the following information about events A, B, and C.

- The probability of A occurring is 0.35.
- The probability of B occurring is 0.37.
- The probability of C occurring is 0.3.
- The probability of at least two of the events occurring is 0.29.
- The probability of B and C occurring is 0.16.
- The probability of A and B occurring is 0.03 greater than the probability of A and C occurring.
- The probability of only A occurring is 0.03 greater than the probability of only C occurring.

Find the probability of exactly one of the three events occurring.

B) 0.33

C) 0.35

D) 0.36

E) 0.37

$$\Theta$$
 $w+x+y+z=0.29$ \Rightarrow $w+y=0.13=$

$$-y = 0.03$$
 $y = 0.0$

$$0.35 - 0.08 = 0.33 - \times$$

$$0 \quad a + 0.08 + 0.10 + 0.05 = 0.35 \quad \Rightarrow \quad a = 0.12$$