Deterministic vs. Stochastic Models

Let \(X\) and \(Y\) be two variables that are related in some way. Assume that we wish to build a model that allows us to make predictions about the value of \(Y\) based on a supplied value for \(X\).

Hypothetical Model

In simple linear regression, we assume that the predictor variable \(X\) and the response variable \(Y\) are related by a linear stochastic relationship of the following form:

\[Y = \beta_0 + \beta_1 X + e\]

where \(e\) is a random variable. We call the equation above the hypothetical model or population model for linear regression.

Fitted Model

We generally begin a linear regression problem by assuming that a hypothetical model of the form \(Y = \beta_0 + \beta_1 X + e\) exists and describes the relationship between our variables. We do not generally have direct access to such a model, however. Our goal in a regression problem is to approximate the hypothetical model by collecting a sample of paired observations of the form \(\left(x_i, y_i \right)\), and then using those to attempt to reconstruct our model. An approximate model generated from sample data is referred to a fitted model.

For simple linear regression, creating a fitted model involves estimating the values of the parameters \(\beta_0\) and \(\beta_1\), as well as proposing a reasonable distribution for \(e\).

Summary

We assume that the relationship between our variables is determined by a hypothetical model of the form:
\[Y = \beta_0 + \beta_1 X + e\]

The fitted model is an approximation of the hypothetical model, and can be written in either of the following forms:

\[\hat Y = \hat \beta_0 + \hat \beta_1 X\] \[Y = \hat \beta_0 + \hat \beta_1 X + \hat e\]
Given a paired observation \(\left(x_i, y_i \right)\), the fitted value of y given \(x_i\) is given by:
\[\hat y_i = \hat\beta_0 + \hat\beta_1 x_i\]

The residual associated with the observation is given by:

\[\hat e_i = y_i - \hat y_i\]

Finding the Fitted Model

We have not yet discussed how to find the fitted model \(\hat Y = \hat \beta_0 + \hat \beta_1 X\). Technically, any proposed values of the parameter estimates \(\hat\beta_0\) and \(\hat\beta_1\) would result in a fitted model. However, some values of these estimates will obviously result in a better estimate of the hypothetical model than others. In the next lecture, we will discuss how to find the best possible parameter estimates (at least for one common interpretation of what word “best” means in this context).

LS0tDQp0aXRsZTogIkxlc3NvbiAwNSAtIEh5cG90aGV0aWNhbCBhbmQgRml0dGVkIE1vZGVscyINCmF1dGhvcjogIlJvYmJpZSBCZWFuZSINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0aGVtZTogZmxhdGx5DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2RlcHRoOiAyDQotLS0NCg0KDQojIERldGVybWluaXN0aWMgdnMuIFN0b2NoYXN0aWMgTW9kZWxzDQoNCkxldCAkWCQgYW5kICRZJCBiZSB0d28gdmFyaWFibGVzIHRoYXQgYXJlIHJlbGF0ZWQgaW4gc29tZSB3YXkuIEFzc3VtZSB0aGF0IHdlIHdpc2ggdG8gYnVpbGQgYSBtb2RlbCB0aGF0IGFsbG93cyB1cyB0byBtYWtlIHByZWRpY3Rpb25zIGFib3V0IHRoZSB2YWx1ZSBvZiAkWSQgYmFzZWQgb24gYSBzdXBwbGllZCB2YWx1ZSBmb3IgJFgkLg0KDQoqIEEgKipkZXRlcm1pbmlzdGljIG1vZGVsKiogaXMgb25lIGluIHdoaWNoIHRoZXJlIGlzIG5vIHJhbmRvbW5lc3MuIEdpdmVuIGEgc3BlY2lmaWMgdmFsdWUgZm9yIHRoZSBpbnB1dCB2YXJpYWJsZSAkWCQsIGEgZGV0ZXJtaW5pc3RpYyBtb2RlbCB3aWxsIHJldHVybiBhIHNwZWNpZmljIHZhbHVlIGZvciAkWSQuIFdoZW4gd29ya2luZyB3aXRoIGRldGVybWluaXN0aWMgbW9kZWxzLCB3ZSB0ZW5kIHRvIHVzZSB0aGUgZm9sbG93aW5nIHRlcm1zIHRvIHJlZmVyIHRvIHRoZSB2YXJpYWJsZXM6DQoNCiAgICAqIFRoZSBpbnB1dCB2YXJpYWJsZSAkWCQgaXMgY2FsbGVkIHRoZSAqKmluZGVwZW5kZW50IHZhcmlhYmxlKiouDQogICAgKiBUaGUgb3V0cHV0IHZhcmlhYmxlICRZJCBpcyBjYWxsZWQgdGhlICoqZGVwZW5kZW50IHZhcmlhYmxlKiouIA0KPGJyPjxicj4NCg0KKiBBICoqc3RvY2hhc3RpYyBtb2RlbCoqIGlzIG9uZSB0aGF0IGluY29ycG9yYXRlcyBhIHJhbmRvbSBlbGVtZW50IGludG8gaXRzIHByZWRpY3Rpb25zLiBHaXZlbiBhIHNwZWNpZmljIHZhbHVlIG9mICRYJCwgYSBzdG9jaGFzdGljIG1vZGVsIHByb3ZpZGVzIGEgcHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9uIGZvciB0aGUgdmFyaWFibGUgJFkkLiBUaGUgbW9kZWwgZG9lcyBub3QgdGVsbCB1cyB0aGUgZXhhY3QgdmFsdWUgb2YgJFkkLCBidXQgaXQgYWxsb3dzIHVzIHRvIG1ha2UgcHJvYmFiaWxpc3RpYyBzdGF0ZW1lbnRzIGNvbmNlcm5pbmcgaXRzIHBvc3NpYmxlIHZhbHVlcy4gV2hlbiB3b3JraW5nIHdpdGggc3RvY2hhc3RpYyBtb2RlbHMsIHdlIHRlbmQgdG8gdXNlIHRoZSBmb2xsb3dpbmcgdGVybXMgdG8gcmVmZXIgdG8gdGhlIHZhcmlhYmxlczoNCg0KICAgICogVGhlIGlucHV0IHZhcmlhYmxlICRYJCBpcyBjYWxsZWQgdGhlICoqcHJlZGljdG9yIHZhcmlhYmxlKiouDQogICAgKiBUaGUgb3V0cHV0IHZhcmlhYmxlICRZJCBpcyBjYWxsZWQgdGhlICoqcmVzcG9uc2UgdmFyaWFibGUqKi4gDQoNCg0KIyBIeXBvdGhldGljYWwgTW9kZWwNCg0KSW4gKipzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24qKiwgd2UgYXNzdW1lIHRoYXQgdGhlIHByZWRpY3RvciB2YXJpYWJsZSAkWCQgYW5kIHRoZSByZXNwb25zZSB2YXJpYWJsZSAkWSQgYXJlIHJlbGF0ZWQgYnkgYSBsaW5lYXIgc3RvY2hhc3RpYyByZWxhdGlvbnNoaXAgb2YgdGhlIGZvbGxvd2luZyBmb3JtOg0KDQo8Y2VudGVyPg0KJCRZID0gXGJldGFfMCArIFxiZXRhXzEgWCArIGUkJA0KPC9jZW50ZXI+DQoNCndoZXJlICRlJCBpcyBhIHJhbmRvbSB2YXJpYWJsZS4gV2UgY2FsbCB0aGUgZXF1YXRpb24gYWJvdmUgdGhlICoqaHlwb3RoZXRpY2FsIG1vZGVsKiogb3IgKipwb3B1bGF0aW9uIG1vZGVsKiogZm9yIGxpbmVhciByZWdyZXNzaW9uLiANCg0KKiBUaGUgcmFuZG9tIHZhcmlhYmxlICRlJCBpcyBjYWxsZWQgdGhlICoqZXJyb3IgdGVybSoqIG9yIHRoZSAqKm5vaXNlIHRlcm0qKi4gDQoNCiogVGhlIGVycm9yIHRlcm0gJGUkIGlzIGludGVuZGVkIHRvIGFjY291bnQgZm9yIHRoZSAoaG9wZWZ1bGx5IHNtYWxsKSBlZmZlY3RzIHRoYXQgaGF2ZSBub3QgYmVlbiBleHBsYWluZWQgYnkgdGhlIGRldGVybWluaXN0aWMgcG9ydGlvbiBvZiBvdXIgbW9kZWwuDQoNCiogR2l2ZW4gYSBzcGVjaWZpYyBwYWlyZWQgb2JzZXJ2YXRpb24gJFxsZWZ0KHhfaSwgeV9pIFxyaWdodCkkLCB3ZSB3cml0ZSAkeV9pID0gXGJldGFfMCArIFxiZXRhXzEgeF9pKyBlX2kkLiANCg0KKiBXaGVuIGFwcGx5aW5nIHRoaXMgbW9kZWwsIHdlIHdpbGwgb2Z0ZW4gYXNzdW1lIHRoYXQgJGUkIGZvbGxvd3MgYSBub3JtYWwgZGlzdHJpYnV0aW9uIHdpdGggYSBtZWFuIG9mIDAgYW5kIHNvbWUgc3RhbmRhcmQgZGV2aWF0aW9uICRcc2lnbWEkLiBUaGUgc2l6ZSBvZiAkXHNpZ21hJCByZWZsZWN0cyB0aGF0IGFtb3VuZyBvZiB1bmNlcnRhaW50eSBpbiBvdXIgbW9kZWwuIA0KDQoqIE5vdGUgdGhhdCBpZiAkRVtlXT0wJCwgdGhlbiAkRVtZfFhdID0gXGJldGFfMCArIFxiZXRhXzEgWCQuIA0KDQoNCiMgRml0dGVkIE1vZGVsDQoNCldlIGdlbmVyYWxseSBiZWdpbiBhIGxpbmVhciByZWdyZXNzaW9uIHByb2JsZW0gYnkgYXNzdW1pbmcgdGhhdCBhIGh5cG90aGV0aWNhbCBtb2RlbCBvZiB0aGUgZm9ybSAkWSA9IFxiZXRhXzAgKyBcYmV0YV8xIFggKyBlJCBleGlzdHMgYW5kIGRlc2NyaWJlcyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gb3VyIHZhcmlhYmxlcy4gV2UgZG8gbm90IGdlbmVyYWxseSBoYXZlIGRpcmVjdCBhY2Nlc3MgdG8gc3VjaCBhIG1vZGVsLCBob3dldmVyLiBPdXIgZ29hbCBpbiBhIHJlZ3Jlc3Npb24gcHJvYmxlbSBpcyB0byBhcHByb3hpbWF0ZSB0aGUgaHlwb3RoZXRpY2FsIG1vZGVsIGJ5IGNvbGxlY3RpbmcgYSBzYW1wbGUgb2YgcGFpcmVkIG9ic2VydmF0aW9ucyBvZiB0aGUgZm9ybSAkXGxlZnQoeF9pLCB5X2kgXHJpZ2h0KSQsIGFuZCB0aGVuIHVzaW5nIHRob3NlIHRvIGF0dGVtcHQgdG8gcmVjb25zdHJ1Y3Qgb3VyIG1vZGVsLiBBbiBhcHByb3hpbWF0ZSBtb2RlbCBnZW5lcmF0ZWQgZnJvbSBzYW1wbGUgZGF0YSBpcyByZWZlcnJlZCB0byBhICoqZml0dGVkIG1vZGVsKiouDQoNCkZvciBzaW1wbGUgbGluZWFyIHJlZ3Jlc3Npb24sIGNyZWF0aW5nIGEgZml0dGVkIG1vZGVsIGludm9sdmVzIGVzdGltYXRpbmcgdGhlIHZhbHVlcyBvZiB0aGUgcGFyYW1ldGVycyAkXGJldGFfMCQgYW5kICRcYmV0YV8xJCwgYXMgd2VsbCBhcyBwcm9wb3NpbmcgYSByZWFzb25hYmxlIGRpc3RyaWJ1dGlvbiBmb3IgJGUkLg0KDQoqIFdlIGRlbm90ZSB0aGUgZXN0aW1hdGVzIG9mICRcYmV0YV8wJCBhbmQgJFxiZXRhXzEkIGJ5ICRcaGF0XGJldGFfMCQgYW5kICRcaGF0XGJldGFfMSQgcmVzcGVjdGl2ZWx5LiANCg0KKiBHaXZlbiBwYXJhbWV0ZXIgZXN0aW1hdGVzICRcaGF0XGJldGFfMCQgYW5kICRcaGF0XGJldGFfMSQsIHdlIGRlZmluZSBhIG5ldyB2YXJpYWJsZSAkXGhhdCBZID0gXGhhdCBcYmV0YV8wICsgXGhhdFxiZXRhXzEgWCQuIA0KDQoqIFRoZSB2YXJpYWJsZSAkXGhhdCBZJCBpcyBjYWxsZWQgdGhlICoqZml0dGVkIHZhbHVlKiogb2YgJFkkLiBJdCBpcyB0aGUgcG9pbnQgZXN0aW1hdGUgdGhhdCB0aGUgbW9kZWwgZ2VuZXJhdGVzIGZvciAkWSQgZ2l2ZW4gdGhlIHZhbHVlIG9mICRYJC4gDQoNCiogRm9yIGEgZ2l2ZW4gcGFpcmVkIG9ic2VydmF0aW9uICRcbGVmdCh4X2ksIHlfaSBccmlnaHQpJCwgd2Ugd3JpdGUgJFxoYXQgeV9pID0gXGhhdCBcYmV0YV8wICsgXGhhdCBcYmV0YV8xIHhfaSQuIA0KDQoqIEZvciBhIGdpdmVuIHBhaXJlZCBvYnNlcnZhdGlvbiAkXGxlZnQoeF9pLCB5X2kgXHJpZ2h0KSQsIHdlIGhhdmUgdGhhdCAkXGhhdCBlX2kgPSB5X2kgLSBcbGVmdChcaGF0IFxiZXRhXzAgKyBcaGF0IFxiZXRhXzEgeF9pIFxyaWdodCkkLCBvciBpbiBvdGhlciB3b3JkcyAkXGhhdCBlX2kgPSB5X2kgLSBcaGF0IHlfaSQuIA0KDQoqIFRoZSB2YWx1ZXMgJFxoYXQgZV9pJCBjYWxjdWxhdGVkIGZyb20gdGhlIHBhaXJlZCBvYnNlcnZhdGlvbnMgaW4gb3VyIHNhbXBsZSBhcmUgY2FsbGVkICoqcmVzaWR1YWxzKiouIFdlIGNhbiB1c2UgdGhlIHJlc2lkdWFscyB0byBhcHByb3hpbWF0ZSB0aGUgZGlzdHJpYnV0aW9uIG9mIHRoZSBlcnJvciB0ZXJtICRlJC4gDQoNCiogV2UgY2FuIHdyaXRlIG91ciBmaXR0ZWQgbW9kZWwgYXMgZWl0aGVyICRcaGF0IFkgPSBcaGF0IFxiZXRhXzAgKyBcaGF0XGJldGFfMSBYJCBvciAkWSA9IFxoYXQgXGJldGFfMCArIFxoYXRcYmV0YV8xIFggKyBcaGF0IGUkLg0KDQojIFN1bW1hcnkNCg0KV2UgYXNzdW1lIHRoYXQgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIG91ciB2YXJpYWJsZXMgaXMgZGV0ZXJtaW5lZCBieSBhICoqaHlwb3RoZXRpY2FsIG1vZGVsKiogb2YgdGhlIGZvcm06IA0KPGNlbnRlcj4NCiQkWSA9IFxiZXRhXzAgKyBcYmV0YV8xIFggKyBlJCQNCjwvY2VudGVyPg0KDQpUaGUgKipmaXR0ZWQgbW9kZWwqKiBpcyBhbiBhcHByb3hpbWF0aW9uIG9mIHRoZSBoeXBvdGhldGljYWwgbW9kZWwsIGFuZCBjYW4gYmUgd3JpdHRlbiBpbiBlaXRoZXIgb2YgdGhlIGZvbGxvd2luZyBmb3JtczoNCg0KPGNlbnRlcj4NCiQkXGhhdCBZID0gXGhhdCBcYmV0YV8wICsgXGhhdCBcYmV0YV8xIFgkJA0KJCRZID0gXGhhdCBcYmV0YV8wICsgXGhhdCBcYmV0YV8xIFggKyBcaGF0IGUkJA0KPC9jZW50ZXI+DQoNCkdpdmVuIGEgcGFpcmVkIG9ic2VydmF0aW9uICRcbGVmdCh4X2ksIHlfaSBccmlnaHQpJCwgdGhlICoqZml0dGVkIHZhbHVlIG9mIHkgZ2l2ZW4gJHhfaSQqKiBpcyBnaXZlbiBieTogDQo8Y2VudGVyPg0KJCRcaGF0IHlfaSA9IFxoYXRcYmV0YV8wICsgXGhhdFxiZXRhXzEgeF9pJCQNCjwvY2VudGVyPg0KDQpUaGUgKipyZXNpZHVhbCoqIGFzc29jaWF0ZWQgd2l0aCB0aGUgb2JzZXJ2YXRpb24gaXMgZ2l2ZW4gYnk6DQoNCjxjZW50ZXI+DQokJFxoYXQgZV9pID0geV9pIC0gXGhhdCB5X2kkJA0KPC9jZW50ZXI+DQoNCmBgYHtyLCBlY2hvPSdGQUxTRSd9DQpzZXQuc2VlZCgzKQ0KeCA8LSBydW5pZihuPTEwLCA1LCAxNSkNCnkgPC0gNCArIDAuMyp4ICsgcm5vcm0oMTAsIDAsIDAuMikNCm1vZGVsIDwtIGxtKHl+eCkNCnBsb3QoeSB+IHgsIHBjaD0yMSwgYmc9J29yYW5nZScsIGNvbD0nYmxhY2snLCBjZXg9MS41KQ0KYWJsaW5lKDQsIDAuMywgY29sPSdkYXJrcmVkJywgbHR5PTIsIGx3ZD0yKQ0KYWJsaW5lKG1vZGVsJGNvZWZmaWNpZW50cywgY29sPSdibHVlJywgbHdkPTIpDQpwb2ludHMoeSB+IHgsIHBjaD0yMSwgYmc9J29yYW5nZScsIGNvbD0nYmxhY2snLCBjZXg9MS41KQ0KdGV4dCg3LCA2LjUsICdIeXBvdGhldGljYWwgTW9kZWwnLCBjb2w9J2RhcmtyZWQnKQ0KdGV4dCg5LjUsIDYuNSwgJ0ZpdHRlZCBNb2RlbCcsIGNvbD0nYmx1ZScpDQpgYGANCg0KDQojIEZpbmRpbmcgdGhlIEZpdHRlZCBNb2RlbA0KDQpXZSBoYXZlIG5vdCB5ZXQgZGlzY3Vzc2VkIGhvdyB0byBmaW5kIHRoZSBmaXR0ZWQgbW9kZWwgJFxoYXQgWSA9IFxoYXQgXGJldGFfMCArIFxoYXQgXGJldGFfMSBYJC4gVGVjaG5pY2FsbHksIGFueSBwcm9wb3NlZCB2YWx1ZXMgb2YgdGhlIHBhcmFtZXRlciBlc3RpbWF0ZXMgJFxoYXRcYmV0YV8wJCBhbmQgJFxoYXRcYmV0YV8xJCB3b3VsZCByZXN1bHQgaW4gYSBmaXR0ZWQgbW9kZWwuIEhvd2V2ZXIsIHNvbWUgdmFsdWVzIG9mIHRoZXNlIGVzdGltYXRlcyB3aWxsIG9idmlvdXNseSByZXN1bHQgaW4gYSBiZXR0ZXIgZXN0aW1hdGUgb2YgdGhlIGh5cG90aGV0aWNhbCBtb2RlbCB0aGFuIG90aGVycy4gSW4gdGhlIG5leHQgbGVjdHVyZSwgd2Ugd2lsbCBkaXNjdXNzIGhvdyB0byBmaW5kIHRoZSBiZXN0IHBvc3NpYmxlIHBhcmFtZXRlciBlc3RpbWF0ZXMgKGF0IGxlYXN0IGZvciBvbmUgY29tbW9uIGludGVycHJldGF0aW9uIG9mIHdoYXQgd29yZCAiYmVzdCIgbWVhbnMgaW4gdGhpcyBjb250ZXh0KS4gDQo=