Read Data
df <- read.table("Davis.csv", sep=",", header = TRUE)
df <- na.omit(df)
summary(df)
X sex weight height repwt repht
Min. : 1.00 F:99 Min. : 39.0 Min. :148.0 Min. : 41.00 Min. :148.0
1st Qu.: 46.00 M:82 1st Qu.: 56.0 1st Qu.:164.0 1st Qu.: 55.00 1st Qu.:161.0
Median : 96.00 Median : 63.0 Median :169.0 Median : 63.00 Median :168.0
Mean : 97.48 Mean : 65.7 Mean :170.8 Mean : 65.68 Mean :168.7
3rd Qu.:146.00 3rd Qu.: 74.0 3rd Qu.:178.0 3rd Qu.: 74.00 3rd Qu.:175.0
Max. :200.00 Max. :119.0 Max. :197.0 Max. :124.00 Max. :200.0
pairs(df[3:6])
plot(weight ~ repwt, df, pch=21, col='black', bg='cyan')
sd(df$weight)
[1] 13.42549
mod1 <- lm(weight ~ repwt, df)
summary(mod1)
Call:
lm(formula = weight ~ repwt, data = df)
Residuals:
Min 1Q Median 3Q Max
-7.5029 -1.0943 -0.1374 1.0884 6.3465
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.84707 0.80817 3.523 0.000542 ***
repwt 0.95699 0.01204 79.472 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.235 on 179 degrees of freedom
Multiple R-squared: 0.9724, Adjusted R-squared: 0.9723
F-statistic: 6316 on 1 and 179 DF, p-value: < 2.2e-16
plot(weight ~ repwt, df, pch=21, col='black', bg='cyan')
abline(mod1$coefficients, col="darkred", lwd = 2)
res1 <- mod1$residuals
hist(res1, breaks = 10)
qqnorm(res1)
qqline(res1)
nd <- data.frame(repwt = c(60, 65, 70, 75, 80, 85, 90, 95, 100))
pi <- predict(mod1, newdata = nd, interval = "prediction", level = 0.99)
pi
fit lwr upr
1 60.26639 54.42851 66.10426
2 65.05133 59.21613 70.88652
3 69.83627 63.99954 75.67300
4 74.62121 68.77875 80.46368
5 79.40616 73.55375 85.25856
6 84.19110 78.32459 90.05761
7 88.97604 83.09128 94.86081
8 93.76099 87.85386 99.66811
9 98.54593 92.61239 104.47946
ci <- predict(mod1, newdata = nd, interval = "confidence", level = 0.99)
ci
fit lwr upr
1 60.26639 59.79864 60.73414
2 65.05133 64.61827 65.48438
3 69.83627 69.38303 70.28952
4 74.62121 74.09923 75.14320
5 79.40616 78.78273 80.02958
6 84.19110 83.44679 84.93541
7 88.97604 88.09941 89.85267
8 93.76099 92.74506 94.77691
9 98.54593 97.38623 99.70562
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCiMgUmVhZCBEYXRhDQoNCmBgYHtyfQ0KZGYgPC0gcmVhZC50YWJsZSgiRGF2aXMuY3N2Iiwgc2VwPSIsIiwgaGVhZGVyID0gVFJVRSkNCmRmIDwtIG5hLm9taXQoZGYpDQpzdW1tYXJ5KGRmKQ0KYGBgDQoNCmBgYHtyfQ0KcGFpcnMoZGZbMzo2XSkNCmBgYA0KDQpgYGB7cn0NCnBsb3Qod2VpZ2h0IH4gcmVwd3QsIGRmLCBwY2g9MjEsIGNvbD0nYmxhY2snLCBiZz0nY3lhbicpDQpgYGANCg0KYGBge3J9DQpzZChkZiR3ZWlnaHQpDQpgYGANCg0KYGBge3J9DQptb2QxIDwtIGxtKHdlaWdodCB+IHJlcHd0LCBkZikNCnN1bW1hcnkobW9kMSkNCmBgYA0KDQoNCmBgYHtyfQ0KcGxvdCh3ZWlnaHQgfiByZXB3dCwgZGYsIHBjaD0yMSwgY29sPSdibGFjaycsIGJnPSdjeWFuJykNCmFibGluZShtb2QxJGNvZWZmaWNpZW50cywgY29sPSJkYXJrcmVkIiwgbHdkID0gMikNCmBgYA0KDQpgYGB7cn0NCnJlczEgPC0gbW9kMSRyZXNpZHVhbHMNCmhpc3QocmVzMSwgYnJlYWtzID0gMTApDQpgYGANCg0KYGBge3J9DQpxcW5vcm0ocmVzMSkNCnFxbGluZShyZXMxKQ0KYGBgDQoNCmBgYHtyfQ0KbmQgPC0gZGF0YS5mcmFtZShyZXB3dCA9IGMoNjAsIDY1LCA3MCwgNzUsIDgwLCA4NSwgOTAsIDk1LCAxMDApKQ0KcGkgPC0gcHJlZGljdChtb2QxLCBuZXdkYXRhID0gbmQsIGludGVydmFsID0gInByZWRpY3Rpb24iLCBsZXZlbCA9IDAuOTkpDQpwaQ0KYGBgDQoNCmBgYHtyfQ0KY2kgPC0gcHJlZGljdChtb2QxLCBuZXdkYXRhID0gbmQsIGludGVydmFsID0gImNvbmZpZGVuY2UiLCBsZXZlbCA9IDAuOTkpDQpjaQ0KYGBgDQoNCg0K