Section 01.a	Section 01.a	Section 01.a	
Simple Interest Formula	Write i_t and d_t in terms of the accumulation function, $a(t)$	Compound Interest Give a(t) in terms of i Give a(t) in terms of d Give a(t) in terms of δ 	
Section 01.a	Section 01.a	Section 01.a	
Identities	Identities	Nominal Rates	
 1) Give <i>i</i> in terms of <i>d</i> 2) Give <i>d</i> in terms of <i>i</i> 	 Give v in terms of i Give v in terms of d 	 Give a(t) in terms of i^(m) Give a(t) in terms of d^(m) 	
Section 01.b – d	Section 01.e	Section 01.g	
Force of Interest: 1) Define FoI in terms of $a(t)$ 2) Give $a(t)$ in terms of δ_t	 Constant Force of Interest 1) Give δ in terms of i 2) Give a(t) in terms of δ 	Variable FoI Trap Given $a(t)$, find AV of 1 invested at time t_1 and accumulated to t_2	
Section 01.g	Section 02.b	Section 03.a	
Variable FoI Trap Given $a(t)$, find PV at time t_1 of a payment of 1 at time t_2	Method of Equated Time	Geometric Series Sum the following: $a + ar + ar^2 + + ar^{n-1}$	
Section 03.b	Section 03.b	Section 03.b	
Annuity Immediate 1) Give formula for $a_{\overline{n} i}$ 2) Give formula for $s_{\overline{n} i}$	Annuity Due 1) Give formula for $\ddot{a}_{\overline{n} i}$ 2) Give formula for $\ddot{s}_{\overline{n} i}$	Annuity Identities 1) Give $\ddot{a}_{\overline{n} i}$ in terms of $a_{\overline{n} i}$ 2) Give $\ddot{s}_{\overline{n} i}$ in terms of $s_{\overline{n} i}$	

$a(t) = (1 + i)^{t}$ $a(t) = (1 - d)^{-t}$ $a(t) = e^{\delta t}$	$i_{t} = \frac{a(t) - a(t-1)}{a(t-1)}$ $d_{t} = \frac{a(t) - a(t-1)}{a(t)}$	a(t) = 1 + it
$a(t) = (1+i)^{t} = \left(1 + \frac{i^{(m)}}{m}\right)^{mt}$ $a(t) = (1-d)^{-t} = \left(1 - \frac{d^{(m)}}{m}\right)^{-mt}$	$v = \frac{1}{1+i}$ $v = 1-d$	$i = \frac{d}{1 - d}$ $d = \frac{i}{1 + i}$
$a(t_{1} \text{to} t_{2}) = e^{\int_{t_{1}}^{t_{2}} \delta_{r} dr} = \frac{a(t_{2})}{a(t_{1})}$	$\delta = \ln(1+i)$ $a(t) = e^{\delta t}$	$\delta_{t} = \frac{a'(t)}{a(t)}$ $a(t) = e^{\int_{0}^{t} \delta_{r} dr}$
$\frac{a(1-r^n)}{1-r}$ $= \frac{\text{First Term} - \text{First Ommitted Term}}{1-\text{Common Ratio}}$	$\overline{t} = \frac{P_1 t_1 + P_2 t_2 + \dots + P_n t_n}{P_1 + P_2 + \dots + P_n}$	$\frac{1}{a(t_1 \operatorname{to} t_2)} = e^{-\int_{t_1}^{t_2} \delta_r dr} = \frac{a(t_1)}{a(t_2)}$
$\ddot{a}_{\overline{n} i} = (1+i)a_{\overline{n} i}$ $\ddot{s}_{\overline{n} i} = (1+i)s_{\overline{n} i}$	$\ddot{a}_{\overline{n} i} = \frac{1 - v^n}{d}$ $\ddot{s}_{\overline{n} i} = \frac{(1 + i)^n - 1}{d}$	$a_{\overline{n} i} = \frac{1 - v^n}{i}$ $s_{\overline{n} i} = \frac{(1 + i)^n - 1}{i}$

Section 03.b	Section 03.b	Section 03.b
Annuity Relationships State the +1/-1 formulas.	Definition of Annuity Formulas 1) Write $s_{\overline{n} i}$ in terms of $(1+i)$.	Definition of Annuity Formulas 1) Write $a_{\overline{n} i}$ in terms of v .
	2) Write $\ddot{s}_{n i}$ in terms of $(1+i)$.	2) Write $\ddot{a}_{n i}$ in terms of v .
Section 03.d	Section 03.f	Section 03.f
Deferred Annuities	Infinite Geometric Series	Perpetuities
1) Give $_{m} a_{\overline{n} i}$ in terms of $a_{\overline{n} i}$ 2) Give $_{m} a_{\overline{n} i}$ using block pmts.	Sum the following: $a + ar + ar^2 + ar^3 +$	1) Give the formula for $a_{\overline{\infty} i}$ 2) Give two formulas for $\ddot{a}_{\overline{\infty} i}$
Section 03.g	Section 04.b	Section 04.b
The $a_{\overline{2n}} / a_{\overline{n}}$ Trick	Fission	Fusion
1) Simplify $a_{\overline{2n}} / a_{\overline{n}}$ 2) Simplify $a_{\overline{3n}} / a_{\overline{n}}$	PV and AV of payments of <i>P</i> occurring at the end of every <i>n</i> years for <i>k n</i> years.	PV and AV of payments of <i>P</i> occurring at the end of each <i>m</i> -thly period, for <i>n</i> years.
Section 04.b	Section 04.b	Section 04.b
<i>m</i> -thly Annuities	<i>m</i> -thly Annuities	<i>m</i> -thly Perpetuities
PV and AV of an <i>n</i> -year annuity paying $1/m$ at the end of each <i>m</i> -thly period.	PV and AV of an <i>n</i> -year annuity paying $1/m$ at the beginning of each <i>m</i> -thly period.	PV of a perpetuity paying $1/m$ at the end of each <i>m</i> -thly period.
Section 04.d	Section 04.e	Section 04.g
Continuous Annuities PV and AV of continuous	Double Dots Cancel State the "Double Dots Cancel"	Annuities with varying interest Write $a = and s = in$
payments of 1 per year for <i>n</i> years.	rule.	terms of $a(t)$.

$a_{\overline{n} i} = v + v^2 + \dots + v^n$ $\ddot{a}_{\overline{n} i} = 1 + v + v^2 + \dots + v^n$	$s_{\overline{n i}} = 1 + (1+i) + \dots + (1+i)^n$ $\ddot{s}_{\overline{n i}} = (1+i) + (1+i)^2 + \dots + (1+i)^n$	$\ddot{s}_{\overline{n} i} = s_{\overline{n+1} i} - 1$ $\ddot{a}_{\overline{n} i} = a_{\overline{n-1} i} + 1$
$a_{\overline{\infty} i} = \frac{1}{i}$ $\ddot{a}_{\overline{\infty} i} = \frac{1}{d} = a_{\overline{\infty} i} + 1$	$\frac{a}{1-r}$	$_{m} a_{\overline{n} i} = v^{m} a_{\overline{n} i}$ $_{m} a_{\overline{n} i} = a_{\overline{m+n} i} - a_{\overline{n} i}$
$PV = \left(P s_{\overline{m} j}\right) a_{\overline{n} i}$ $AV = \left(P s_{\overline{m} j}\right) s_{\overline{n} i}$	$PV = \left(\frac{P}{s_{\overline{n} i}}\right) a_{\overline{kn} j}$ $AV = \left(\frac{P}{s_{\overline{n} i}}\right) s_{\overline{kn} j}$	$\frac{a_{\overline{2n}}}{a_{\overline{n}}} = 1 + v^n$ $\frac{a_{\overline{3n}}}{a_{\overline{n}}} = 1 + v^n + v^{2n}$
$a_{\overline{\infty} }^{(m)} = \frac{1}{i^{(m)}}$ $\ddot{a}_{\overline{\infty} }^{(m)} = \frac{1}{d^{(m)}} = a_{\overline{\infty} }^{(m)} + \frac{1}{m}$	$\ddot{a}_{n }^{(m)} = \frac{1 - v^{n}}{d^{(m)}}$ $\ddot{s}_{n }^{(m)} = \frac{(1 + i)^{n} - 1}{d^{(m)}}$	$a_{\overline{n} }^{(m)} = \frac{1 - v^{n}}{i^{(m)}}$ $s_{\overline{n} }^{(m)} = \frac{(1 + i)^{n} - 1}{i^{(m)}}$
$a_{\overline{n} } = \left(\frac{1}{a(1)} + \frac{1}{a(2)} + \dots + \frac{1}{a(n)}\right)$ $s_{\overline{n} } = a(n) \left(\frac{1}{a(1)} + \frac{1}{a(2)} + \dots + \frac{1}{a(n)}\right)$	$\frac{a_{\overline{n} }}{a_{\overline{p} }} = \frac{\ddot{a}_{\overline{n} }}{\ddot{a}_{\overline{p} }} = \frac{a_{\overline{n} }^{(m)}}{a_{\overline{p} }^{(m)}} = \frac{\ddot{a}_{\overline{n} }^{(m)}}{\ddot{a}_{\overline{p} }^{(m)}}$	$\overline{a}_{\overline{n} } = \int_0^n v^t dt = \frac{1 - v^n}{\delta}$ $\overline{s}_{\overline{n} } = (1 + i)^n \overline{a}_{\overline{n} } = \frac{(1 + i)^n - 1}{\delta}$

Section 04.h	Section 04.h	Section 04.h			
Arithmetic Progression P/Q formulas for AV and PV of an arithmetic annuity.	Increasing Annuities 1) Give the formula for $(Ia)_{\overline{n} }$. 2) Give the formula for $(Is)_{\overline{n} }$.	Decreasing Annuities 1) Give the formula for $(Da)_{\overline{n} }$. 2) Give the formula for $(Ds)_{\overline{n} }$.			
Section 04.h	Section 04.h	Section 04.i			
Increasing Perpetuities Give the formula for $(Ia)_{\overline{\infty}}$	Increasing to Level Perpetuities PV of a perpetuity imm. paying: 1, 2,, n, n, n, n,	<i>m</i> -thly Increasing Annuities 1) Describe payments for $(Ia)_{n }^{(m)}$ 2) Give formula for $(Ia)_{n }^{(m)}$			
Section 04.i	Section 04.j	Section 04.k			
<i>m</i> -thly Increasing Annuities 1) Describe payments for $(I^{(m)}a)_{\overline{n} }^{(m)}$ 2) Give formula for $(I^{(m)}a)_{\overline{n} }^{(m)}$	Geometric Annuities PV of an <i>n</i> -year annuity immediate with payments starting at <i>P</i> and increasing by <i>k</i> % per year.	Continuous Annuities PV of an <i>n</i> -year annuity paying continuously at a rate of <i>t</i> , with a constant FoI, δ .			
Section 04.k	Section 04.k	Section 04.1			
Continuous Annuities PV of an <i>n</i> -year annuity paying continuously at a rate of $f(t)$, with a constant FoI, δ .	Continuous Annuities Find PV of an <i>n</i> -year annuity paying continuously at a rate of $f(t)$, with a variable FoI, δ_t .	Palindromic Annuity PV of an annuity imm. paying: 1, 2, 3,, $n - 1, n, n - 1,, 3, 2, 1$			
Section 05.a	Section 05.a	Section 05.e			
Net Present Value Define NPV.	Internal Rate of Return Define IRR.	Find DWR for this example: $t=0$ $t=1/4$ $t=1/2$ $t=1$ Beg: 0 120 90 220 Trans + 100 - 40 + 110 - 220 End: 100 80 200 0			

$(Da)_{\overline{n} } = \frac{n - a_{\overline{n} }}{i}$ $(Ds)_{\overline{n} } = \frac{n(1+i)^n - s_{\overline{n} }}{i}$	$(Ia)_{\overline{n} } = \frac{\ddot{a}_{\overline{n} } - nv^{n}}{i}$ $(Is)_{\overline{n} } = \frac{\ddot{s}_{\overline{n} } - n}{i}$	$A = P a_{\overline{n} } + Q \frac{a_{\overline{n} } - n v^n}{i}$ $S = P s_{\overline{n} } + Q \frac{s_{\overline{n} } - n}{i}$
PV of <i>m</i> -thly payments starting at 1/m, and increasing by $1/meach year.(Ia)_{\overline{n} }^{(\underline{m})} = \frac{\ddot{a}_{\overline{n} } - nv^n}{i^{(\underline{m})}}$	$PV = \frac{\ddot{a}_{\overline{n}}}{i}$	$(Ia)_{\overline{\infty} } = \frac{1}{id} = \frac{1}{i} + \frac{1}{i^2}$
$(\overline{I}\overline{a})_{\overline{n} } = \int_0^n tv^tdt = \frac{\overline{a}_{\overline{n} } - nv^n}{\delta}$	$PV = \frac{P}{1+k} a_{\overline{n} i'}$ where $i' = \frac{i-k}{1+k}$	PV of <i>m</i> -thly payments starting at $1/m^2$, and increasing by $1/m^2$ each <i>m</i> -thly period. $(I^{(m)}a)_{n }^{(m)} = \frac{\ddot{a}_{n }^{(m)} - nv^n}{i^{(m)}}$
$PV = a_{\overline{n} i} \cdot \ddot{a}_{\overline{n} i}$	$\int_0^n \frac{f(t)}{a(t)} dt$	$\int_0^n f(t) v^t dt$
DWR = $\frac{-100 + 40 - 110 + 220}{100(1) - 40(3/4) + 110(1/2)}$ = 0.4 = 40%	The rate at which the PV of cash inflows is equal to PV of cash outflows.	Sum the PV of cash inflows and cash outflows, calculated using the "interest preference rate".

Section 05.e					Section 06.a	Section 06.a	
Find DWR for this example:			s example $t=1/2$	ple: t=1	Amortization	Amortization	
Beg:	0	120	90	220	1) Find B_t prospectively.	1) Give formulas for I_t .	
Trans	+ 100	- 40	+ 110	- 220	2) Find B_t retrospectively.	2) Give formulas for P_t .	
End:	100	80	200	0			
Section	n 06.b						
Sinking Funds 1) Give formula for SFD. 2) Give formula for total payment under SF method.			inds for SFI total pa ethod.	D. yment			
Section	n 07.b				Section 07.b	Section 07.b	
Bond Pricing State the relationship between the coupon rate and the special coupon rate.			ing hip betw and the on rate.	veen	Bond Pricing Give the basic bond pricing formula.	Bond Pricing State the premium/discount bond pricing formula.	
Section	n 07.c				Section 07.c	Section 07.c	
Premium and Discount Explain the relationships between P and C and g and i for a bond purchased at a premium.				t tween bond n.	Premium and Discount Explain the relationships between P and C and g and i for a bond purchased at a discount.	Premium and Discount For bonds sold at a premium, does the book value increase or decrease over time?	
Section 07.c					Section 07.c	Section 07.c	
Premium and Discount For bonds sold at a discount, does the book value increase or decrease over time?			Discoun a discou ue incre er time?	t unt, ase	Premium and Discount Give formula for Write-Down of Premium	Premium and Discount Give formula for Write-Up of Discount	

$I_{t} = R[1 - v^{n-t+1}] = i B_{t-1}$ $P_{t} = R v^{n-t+1} = R - I_{t}$	$B_{t} = R a_{\overline{n-t }}$ $B_{t} = L(1+i)^{t} - R s_{\overline{t }}$	$TWR = \frac{120}{100} \frac{90}{80} \frac{220}{200} - 1$ $= 0.485 = 48.5\%$
		$SFD = \frac{L}{s_{\overline{n} j}}$ $R_{i} = Li + \frac{L}{s_{\overline{n} j}}$ (<i>i</i> is rate on loan, <i>j</i> is SF rate)
$P = C + (Fr - Ci)a_{\overline{n} i}$	$P = F r a_{\overline{n} i} + C v^n$	Cg = Fr
Premium: Book value decreases over time. This process is called "Write-Down" of premium.	Discount: P < C g < i	Premium: P > C g > i
$P_t = (C i - F r) v^{n-t+1}$	$P_t = (Fr - Ci)v^{n-t+1}$	Discount: Book value increases over time. This process is called "Write-Up" of discount.

Section 07.d	Section 07.d	Section 07.f
Price Between Coupons Give the Full Price (also called the Dirty Price).	Price Between Coupons Give the Market Price (also called the Clean Price).	Callable Bonds For a bond selling at a premium, is an earlier redemption date better or worse?
Section 07.f	Section 08.b	Section 08.b
Callable Bonds For a bond selling at a discount, is an earlier redemption date better or worse?	Preferred Stock Give the price of a preferred stock paying coupons of Fr .	Common Stock Give the theoretical price of a common stock with expected dividend of D and growth rate k .
Section 09.a	Section 09.b	Section 09.b
Inflation Given an effective rate of i , and an inflation rate of r , find the real rate of interest, i' .	Spot Rates and Forward Rates Given spot rates $s_1, s_2,$, find a formula for the forward rate f_n .	Spot Rates and Forward Rates Given forward rates $f_1, f_2,,$ find a formula for the spot rate s_n .
Section 09.d	Section 09.d	Section 09.e
Duration and Convexity Give the formula for Macaulay Duration.	Duration and Convexity Give the Macaulay Duration for a zero coupon bond.	Duration and Convexity Give the derivative definition for Macaulay Duration.
Section 09.f	Section 09.f	Section 09.g
Duration and Convexity Give the derivative definition for Modified Duration.	Duration and Convexity State the relationship between <i>ModD</i> and <i>MacD</i> .	Duration and Convexity Assume a portfolio contains n investments, each with present value PV_i and duration $ModD_i$. Find the duration of the portfolio.

For a bond selling at a premium, an earlier redemption date is worse.	$B_{t+k} - k F r = B_t (1+i)^k - k F r$	$B_{t+k} = B_t (1+i)^k$
$P = \frac{D}{i - k}$	$P = \frac{Fr}{i}$	For a bond selling at a discount, an earlier redemption date is better.
$(1+s_n)^n = (1+f_0)\cdot(1+f_1)\cdot\ldots\cdot(1+f_{n-1})$	$1 + f_n = \frac{(1 + s_{n+1})^{n+1}}{(1 + s_n)^n}$	$i' = \frac{i-r}{1+r}$
$MacD = -\frac{P'(\delta)}{P(\delta)}$	MacD = n for a zero coupon bond	$MacD = \frac{\sum (t \cdot v^{t} \cdot CF_{t})}{\sum (v^{t} \cdot CF_{t})}$
$ModD = \frac{\sum (PV_i \cdot ModD_i)}{\sum PV_i}$	$ModD = v \cdot MacD$	$ModD = -\frac{P'(i)}{P(i)}$

Section 09.i	Section 09.i	Section 09.i
Duration and Convexity Give the derivative definition for Convexity.	Duration and Convexity Give the formula for Convexity.	Duration and Convexity Give the Taylor Polynomial approximation for ΔP , given Δi .
Section 09.j	Section 09.k	Section 09.j
Immunization State the criteria for Redington Immunization. What is the effect of Redington Immunization?	Immunization State the criteria for Full Immunization. What is the effect of Full Immunization?	Immunization State the criteria for Duration Matching.
Section 10	Section 10	Section 10
Buying and Selling Assets As an individual buying an asset, do you pay the ask price, or the bid price?	Buying and Selling Assets As an individual selling an asset, do you receive the ask price, or the bid price?	Buying and Selling Assets Which is larger: The ask price, or the bid price?
Section 10	Section 10	Section 10
Buying and Selling Assets Does a broker buying an asset pay the ask price or the bid price?	Buying and Selling Assets Does a broker selling an asset receive the ask price or the bid price?	Derivatives State four reasons for using derivatives.
Section 10	Section 10	Section 10
Long vs Short Positions If you have a long position in an asset, do you benefit from an increase or decrease in the price of that asset?	Long vs Short Positions If you have a short position in an asset, do you benefit from an increase or decrease in the price of that asset?	Short-Selling Describe the basic process of a short-sale, ignoring haircuts and dividends.

$\Delta P \approx P(i) \cdot \left[-(\Delta i) ModD + \frac{1}{2} (\Delta i)^2 (Conv) \right]$	$Conv = \frac{\sum \left[t(t+1)v^{t+2} CF_t \right]}{\sum \left(v^t \cdot CF_t \right)}$	$Conv = -\frac{P''(i)}{P(i)}$
$PV_A = PV_L$ $ModD_A = ModD_L$	$PV_A = PV_L$ $ModD_A = ModD_L$ Each liability falls between two assets. Full Immunization protects against all changes in <i>i</i> .	$PV_{A} = PV_{L}$ $ModD_{A} = ModD_{L}$ $Conv_{A} > Conv_{L}$ Redington Immunization protects against small changes in <i>i</i> .
The ask price is larger than the bid price.	Individuals sell at the bid price.	Individuals buy at the ask price.
 Risk management - hedging Speculation - investment vehicle Reducing transaction costs Regulatory arbitrage 	Brokers sell at the ask price.	Brokers buy at the bid price.
 Short Selling: Borrow a share of the stock, and sell it immediately. Close the short at a later date by purchasing a share of the stock and returning it to the original lender. 	Short positions benefit from a decrease in the price of the underlying asset.	Long positions benefit from an increase in the price of the underlying asset.

Section 10	Section 10	Section 10
Short-Selling What is a haircut (also called margin)?	Short-Selling What is the maximum loss that can be incurred as a result of a short-sell?	Short-Selling List three reasons for short-selling.
Section 11	Section 11	Section 11
Forward Contracts State the payoff of a long forward contract.	Forward Contracts State the payoff of a short forward contract.	Forward Contracts What is the relationship between payoff and profit for a forward contract?
Section 12	Section 12	Section 12
Call Options Describe a call option.	Call Options Give formulas for payoff and profit for a long call and a short call.	Call Options What positions do the sides of a call option hold with respect to the underlying asset?
Section 12	Section 12	
Call Options Sketch graphs of payoff and profit for a long call.	Call Options Sketch graphs of payoff and profit for a short call.	
Section 13	Section 13	Section 13
Put Options Describe a put option.	Put Options Give formulas for payoff and profit for a long put and a short put.	Put Options What positions do the sides of a put option hold with respect to the underlying asset?

 To speculate that the price of the asset will decline. To borrow money for financing purposes. To hedge the risk of owning an asset or a derivative on the 	The potential loss on a short-sale is unlimited.	A haircut (or margin) is collateral given to the lender by the short-seller.
asset. Since the only transactions take place at time <i>T</i> , payoff and profit are the same for a forward contract.	Payoff for short forward = $F - S_T$	Payoff for long forward = $S_T - F$
A long (or purchased) call is long with respect to the underlying asset. A short (or written) call is short with respect to the underlying asset.	Long Call • $PO = \max[0, S_T - K]$ • Profit = PO - FV(Prem) Long Call • $PO = -\max[0, S_T - K]$ • Profit = PO + FV(Prem)	The purchaser of a call option has the right (but not the obligation) to buy for <i>K</i> on the exercise date. The writer of a call option has an obligation to sell for <i>K</i> if the call is exercised.
	Short (Written) Call V(Prem) S_T	Long (Purchased) Call $0 - FV(Prem) _{K}$ S_{T}
A long (or purchased) put is short with respect to the underlying asset. A short (or written) put is long with respect to the underlying asset.	Long Put • $PO = \max[0, K - S_T]$ • Profit = PO - FV(Prem) Long Put • $PO = -\max[0, K - S_T]$ • Profit = PO + FV(Prem)	The purchaser of a put option has the right (but not the obligation) to sell for K on the exercise date. The writer of a put option has an obligation to buy for K if the put is exercised.

ſ

Section 13	Section 13	
Put Options Sketch graphs of payoff and profit for a long put.	Put Options Sketch graphs of payoff and profit for a short put.	
Sections 12 and 13	Section 14	Section 15
Option Styles Describe the difference between American-style options and European-style options.	Option Moneyness Describe the following terms: 1. In-the-money 2. At-the-money 3. Out-of-the-money	Hedging Strategies1. Describe the assets used to create a protective put.2. In terms of profit, a protective put is the same as what option?
Section 15	Section 15	Section 15
Hedging Strategies 1. Describe the assets used to create a covered call. 2. In terms of profit, a covered call is the same as what option?	Hedging Strategies1. Describe the assets used to create a covered put.2. In terms of profit, a covered put is the same as what option?	Hedging Strategies 1. Describe the assets used to create a protective call. 2. In terms of profit, a protective call is the same as what option?
Section 16	Section 16	Section 16
Put-Call Parity State the general formula for Put-Call Parity	Put-Call Parity State the Put-Call Parity formula for a non-dividend paying stock.	Arbitrage Define arbitrage.
Section 16	Section 16	Section 16
Combining Options Sketch the graph of the payoff of a synthetic forward. Describe the options used to construct a synthetic forward. 	 Combining Options Sketch the graph of the payoff of a straddle. Describe the options used to construct a straddle. 	 Combining Options Sketch the graph of the payoff of a K₁-K₂ strangle. Describe the options used to construct a K₁-K₂ strangle.

	Short (Written) Put $\int_{K}^{FV(Prem)} S_{T}$	Long (Purchased) Put 0 $-FV(Prem)$ K
 Protective Put = Long Asset + Long Put In terms of profit: Long Asset + Long Put = Long Call 	 In-the-money: Positive payoff if the option is exercised now. At-the-money: Spot price is currently equal to strike price. Out-of-the-money: Negative PO if the option is exercised now. 	European-style options may only be exercised on the exercise date. American-style options may be exercised at any time prior to the exercise date.
 Covered Call = Long Asset + Short Call In terms of profit: Long Asset + Short Call = Short Put 	 Covered Put = Short Asset + Short Put In terms of profit: Short Asset + Short Put = Short Call 	 Protective Call = Short Asset + Long Call In terms of profit: Short Asset + Long Call = Long Put
A transaction which generates a positive cash flow with no net investment or risk.	$Call - Put = S_0 - PV(K)$	$Call - Put = PV(F_{0,T}) - PV(K)$ $Call - Put = F_{0,T}^{P} - PV(K)$
K_1 - Strike Long Put K_2 - Strike Long Call	K - Strike Long Call K - Strike Long Put	<i>K</i> - Strike Long Call <i>K</i> - Strike Short Put

Section 16	Section 16	Section 16
 Combining Options Sketch the graph of the payoff of a K₁-K₂ collar. Describe the options used to construct a K₁-K₂ collar. 	 Combining Options Sketch the graph of the payoff of a K₁-K₂ bear spread. Describe the options used to build a K₁-K₂ bear spread. 	 Combining Options Sketch the graph of the payoff of a K₁-K₂ bull spread. Describe the options used to build a K₁-K₂ bull spread.
Section 16	Section 16	Section 16
 Combining Options Sketch the graph of the PO of a K₁-K₂-K₃ asymm butterfly. Describe the options used in a K₁-K₂-K₃ asymm butterfly. 	 Combining Options Sketch the graph of the PO of a K₁-K₂-K₃ symm butterfly. Describe the options used in a K₁-K₂-K₃ symm butterfly. 	 Combining Options Sketch the graph of the payoff of a K₁-K₂ box spread. Describe the options used to build a K₁-K₂ box spread.
Section 17	Section 17	Section 16
Hedging List six potential reasons to hedge.	Hedging List four potential reasons not to hedge.	 Combining Options Sketch the graph of the payoff of a ratio spread. Describe the options used to construct a ratio spread.
Section 18	Section 18	Section 18
Cash-and-Carry Describe a cash-and-carry strategy. What is the purpose of a cash- and-carry strategy? 	 Reverse Cash-and-Carry Describe a reverse cash-and-carry strategy. What is the purpose of a reverse cash-and-carry strategy? 	Futures Contracts List four ways in which a futures contract differs from a forward contract.
Section 19	Section 19	Section 19
Commodity Swaps Describe a commodity swap.	Commodity Swaps Describe a market value of a commodity swap.	Interest Rate Swaps Consider a three year period with spot rates s_1 , s_2 , and s_3 . Provide a formula that could be used to find the fixed swap rate <i>R</i> .

Section 18	Section 18	Section 18
Forward Prices Give the forward price of a stock that pays no dividends.	Forward Prices Give the forward price of a stock paying discrete dividends.	Forward Prices Give the forward price of a stock paying continuous dividends.
Section 18	Section 18	Section 18
Prepaid Forward Prices Give the prepaid forward price of a stock that pays no dividends.	Prepaid Forward Prices Give the prepaid forward price of a stock paying discrete dividends.	Prepaid Forward Prices Give the prepaid forward price of a stock paying continuous dividends.
Section 18		
Forward Prices State the relationship between the forward and prepaid forward prices of an asset.		

$F_{0,T} = S_0 e^{(r-\delta)T}$	$F_{0,T} = S_0 e^{rT} - AV(Divs)$	$F_{0,T} = S_0 e^{rT}$
$F_{0,T}^P = S_0 e^{-\delta T}$	$F_{0,T}^{P} = S_0 - PV(Divs)$	$F_{0,T}^{P} = S_{0}$
		$F_{0,T}^{P} = PV(F_{0,T}) = F_{0,T}e^{-rT}$ $F_{0,T} = AV(F_{0,T}^{P}) = F_{0,T}^{P}e^{rT}$