Actex – Ch. 01	Actex – Ch. 01	Actex – Ch. 01
Addition Rule	Addition Rule	Mutually Exclusive Events
$P(A \cup B)$	$P(A \cup B \cup C)$	A and B are mutually exclusive if:
		(Give two criteria)
Actex – Ch. 01	Actex – Ch. 01	Actex – Ch. 01
Complementary Events	Law of Total Probability P(B) = ?	DeMorgan's Laws
P(A')	A B A'	$P\Big[(A \cup B)'\Big]$ $P\Big[(A \cap B)'\Big]$
Actex – Ch. 02	Actex – Ch. 02	Actex – Ch. 02
Conditional Probability	Multiplication Rule	Independent Events
$P(A \mid B)$	$P(A \cap B)$	A and B are independent iff: • $P(A \cap B) = ?$ • $P(A \mid B) = ?$ • $P(B \mid A) = ?$
Actex – Ch. 02	Actex – Ch. 02	Actex – Ch. 02
Baye's Rule $P(A B) = ?$	Baye's Rule $P(A_1 B) = ?$	Misc Probability Rules
A B A'	$ \begin{array}{c} $	$P(A' \mid B)$
Actex – Ch. 02		
Misc Probability Rules $P(A \cup B \mid C)$		

$P(A \cap B) = 0$ $P(A \cup B) = P(A) + P(B)$	$P(A \cup B \cup C) =$ $P(A) + P(B) + P(C)$ $- P(A \cap B) - P(A \cap C)$ $- P(B \cap C) + P(A \cap B \cap C)$	$P(A \cup B) =$ $P(A) + P(B) - P(A \cap B)$
$P[(A \cup B)'] = P(A' \cap B')$ $P[(A \cap B)'] = P(A' \cup B')$	$P(B) = P(B \cap A) + P(B \cap A')$	P(A') = 1 - P(A)
$P(A \cap B) = P(A)P(B)$ $P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$	$P(A \cap B) = P(A \mid B)P(B)$ $P(A \cap B) = P(B \mid A)P(A)$	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
$P(A' \mid B) = 1 - P(A \mid B)$	$P(A_{1} B) =$ $\frac{P(B A_{1})P(A_{1})}{P(B A_{1})P(A_{1}) + P(B A_{2})P(A_{2}) + P(B A_{3})P(A_{3})}$	$\frac{P(A \mid B) =}{P(B \mid A)P(A)}$ $\frac{P(B \mid A)P(A) + P(B \mid A')P(A')}{P(B \mid A)P(A) + P(B \mid A')P(A')}$
		$P(A \cup B \mid C) =$ $P(A \mid C) + P(B \mid C) - P(A \cap B \mid C)$

Actex – Ch. 03	Actex – Ch. 03	Actex – Ch. 03
Permutations Find the number of ways of ordering <i>n</i> distinct objects.	Permutations Find the number of ways selecting an ordered collection of <i>k</i> objects from a pool of <i>n</i> distinct objects.	Permutations Find the number of ways of ordering <i>n</i> objects, which are of <i>t</i> different types.
Actex – Ch. 03		
Combinations Find the number of ways of selecting k objects from a pool of n distinct objects if order doesn't matter.		
Actex – Ch. 04	Actex – Ch. 04	Actex – Ch. 04
Probability Density Function X is a cont. random variable with pdf $f(x)$. Find $P[a \le x \le b]$.	Probability Density Function List the criteria for $f(x)$ to be a probability density function.	Cumulative Distribution Function Define CDF, $F(x)$, and the Survival Function, $S(x)$, in terms of the probabilities they represent.
Actex – Ch. 04	Actex – Ch. 04	Actex – Ch. 04
Cumulative Distribution Function Give $F(x)$ and $S(x)$ for a continuous random variable X with pdf $f(x)$.	Cumulative Distribution Function Find $F'(x)$ and $S'(x)$.	Cumulative Distribution Function Give $P[a < x \le b]$ in terms of $F(x)$ and $S(x)$.
Actex – Ch. 04		
Hazard Rate Give two formulas for the hazard rate (or failure rate) $h(x)$.		

Actex – Ch. 05	Actex – Ch. 05	Actex – Ch. 05
Expected Value	Expected Value	Expected Value
Give $E[X]$ in terms of $f(x)$.	Give $E[h(X)]$.	State the Darth Vader Rule.
(Discrete and continuous)	(Discrete and Continuous)	
Actex – Ch. 05	Actex – Ch. 05	Actex – Ch. 05
Moments	Variance	Algebraic Properties
 Define the <i>n</i>th moment of <i>X</i>. Define the <i>n</i>th central moment of <i>X</i>. 	Give two formulas for $Var[X]$.	E[aX+b] = ? Var $[aX+b] = ?$
Actex – Ch. 05	Actex – Ch. 05	Actex – Ch. 05
Moment Generating Functions Define $M_X(t)$.	Moment Generating Functions Give $E[X^n]$ in terms of $M_X(t)$.	Moment Generating Functions Give Var $[X]$ in terms of $M_X(t)$.
Actex – Ch. 05	Actex – Ch. 05	Actex – Ch. 05
Moment Generating Functions	Moment Generating Functions	Moment Generating Functions
Let $Y = a X + b$. Find $M_Y(t)$ in terms of $M_X(t)$.	Assume X and Y are independent and let $S = X + Y$. Find $M_s(t)$ in terms of $M_Y(t)$ and $M_X(t)$.	Describe the distribution of X if $M_X(t) = p_1 e^{at} + p_2 e^{bt} + p_3 e^{ct}$.
Actex – Ch. 05	Actex – Ch. 05	Actex – Ch. 05
Percentiles Define the 100 <i>p</i> -th percentile of a continuous random variable, <i>X</i> .	Skewness Give formula for skewness.	Chebyshev's Inequality State Chebyshev's Inequality.

If $X \ge 0$, then $E[X] = \int_0^\infty S(x) dx$	$E[X] = \sum h(x) f(x)$ $E[X] = \int_{-\infty}^{\infty} h(x) f(x) dx$	$E[X] = \sum x f(x)$ $E[X] = \int_{-\infty}^{\infty} x f(x) dx$
$E[aX + b] = aE[X] + b$ $Var[aX + b] = a^{2}Var[X]$	$\operatorname{Var}[X] = E[(X - \mu)^{2}]$ $\operatorname{Var}[X] = E[X^{2}] - (E[X])^{2}$	$E[X^n]$ $E[(X - \mu)^n]$
$\frac{d^2}{dt^2} \ln \left[M_X(t) \right]_{t=0} = \operatorname{Var} \left[X \right]$	$M_{X}(0) = 1$ $M'_{X}(0) = E[X]$ $M_{X}^{(n)}(0) = E[X^{n}]$	$M_X(t) = E[e^{tx}]$
X is discrete with three possible values: a, b, and c. Furthermore: $P[X = a] = p_1$ $P[X = b] = p_2$ $P[X = c] = p_3$	$M_{S}(t) = M_{X}(t) \cdot M_{Y}(t)$	$M_Y(t) = e^{bt} M_X(at)$
$P[X - \mu_X > r \sigma_X] \le \frac{1}{r^2}$	$\frac{E\left[\left(X-\mu\right)^3\right]}{\sigma^3}$	The 100 <i>p</i> -th percentile is the smallest number c_p for which $F(c_p) \ge p$

Actex – Ch. 05	Actex – Ch. 05	
Truncated Distributions E[X a < X < b] = ? E[X X > k] = ?	Coefficient of Variation Define c_v .	
Actex - Ch 06	Actex - Ch 06	Actey - Ch 06
		Activ – Cli. 00
Discrete Uniform Distribution	Discrete Uniform Distribution	Discrete Uniform Distribution
Give $f(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_{X}(t)$.
(Assuming $x = 1, 2,, N$.)	(Assuming $x = 1, 2,, N$.)	(Assuming $x = 1, 2,, N$.)
Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Binomial Distribution	Binomial Distribution	Binomial Distribution
Describe what X measures. Give $f(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_X(t)$.
Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Poisson Distribution Describe what <i>X</i> measures. Give $f(x)$.	Poisson Distribution Give $E[x]$ and $Var[x]$.	Poisson Distribution Give $M_X(t)$.

	$c_v = \frac{\sigma}{\mu}$	E[X a < X < b] = $\frac{1}{F(b) - F(a)} \int_{a}^{b} x f(x) dx$ $E[X X > k] = \frac{1}{S(k)} \int_{k}^{\infty} x f(x) dx$
$M_{X}(t) = \frac{e^{t}(e^{Nt}-1)}{N(e^{t}-1)}$ Note: This is the sum of a finite geometric series	$\mu = \frac{N+1}{2}$ $\sigma^2 = \frac{N^2 - 1}{12}$	$f(x) = \frac{1}{N}$ $x = 1, 2, \dots, N$
$M_{X}(t) = (q + p e^{t})^{n}$	$\mu = n p$ $\sigma^2 = n p q$	X = number of successes in <i>n</i> trials. $f(x) = {n \choose x} p^{x} q^{n-x}$ $x = 0, 1, \dots, n$
$M_X(t) = e^{\lambda(e^t - 1)}$	$\mu = \lambda$ $\sigma^2 = \lambda$	X = number of times an event occurs in a unit of time $f(x) = \frac{e^{-\lambda}\lambda^{x}}{x!}$

Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Geometric Distribution	Geometric Distribution	Geometric Distribution
Describe what <i>X</i> measures.	Give $E[x]$ and $Var[x]$.	Give $M_{x}(t)$.
Give $f(x)$.		
Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Negative Binomial Distribution	Negative Binomial Distribution	Negative Binomial Distribution
Describe what <i>X</i> measures.	Give $E[x]$ and $Var[x]$.	Give $M_{x}(t)$.
Give $f(x)$.		
Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Hypergeometric Distribution	Hypergeometric Distribution	Discrete Distributions
Describe what X measures	Give $E[\mathbf{r}]$ and $Var[\mathbf{r}]$	What is the relationship between
Give $f(x)$.	Give $E[x]$ and $\operatorname{var}[x]$.	the Negative Binomial and
		Geometric distributions?
Actex – Ch. 06	Actex – Ch. 06	Actex – Ch. 06
Multinomial Distribution	Multinomial Distribution	Geometric Distribution
Give $f(x_1, x_2,, x_n)$.	Give $E[x]$ and $Var[x]$.	State the consequences of the
		Memoryless Property.
Actex – Ch. 07	Actex – Ch. 07	Actex – Ch. 07
Continuous Uniform Distribution	Continuous Uniform Distribution	Continuous Uniform Distribution
Give $f(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_{X}(t)$.

$$\begin{split} M_{x}(t) &= \frac{p}{1-qe^{t}} \\ \text{Note: This is the sum of an infinite geometric series} \\ \sigma^{2} &= \frac{q}{p^{2}} \\ \end{pmatrix} \begin{bmatrix} \chi = number of failures \\ prior to first success \\ f(x) &= q^{x} p \\ x = 0, 1, 2, \dots \\ \end{bmatrix} \\ \\ M_{x}(t) &= \left[\frac{p}{1-qe^{t}}\right]^{r} \\ m_{x}(t) &= \left[\frac{p}{1-qe^{t}}\right]^{r} \\ \gamma^{2} &= \frac{r q}{p^{2}} \\ \sigma^{2} &= \frac{r q}{p^{2}} \\ \sigma^{2} &= \frac{r q}{p^{2}} \\ \end{bmatrix} \\ \\ \begin{array}{c} \chi = number of failures \\ prior to success number r \\ f(x) &= \left(\frac{r+x-1}{x}\right)p^{r}q^{s} \\ x = 0, 1, 2, \dots \\ \end{bmatrix} \\ \\ \text{NegBin}(r = 1, p) \sim \text{Geom}(p) \\ \text{NegBin}(r = 1, p) \sim \text{Geom}(p) \\ \end{array} \\ \begin{array}{c} \mu &= \frac{nD}{T} \\ \sigma^{2} &= \frac{nD(T-D)(T-n)}{T^{2}(T-1)} \\ \end{array} \\ \\ \begin{array}{c} D \text{ desired objects; } T \text{ objects total} \\ x = number of desired objects in a \\ sample of size n (wo rep.) \\ f(x) &= \left(\frac{Dx}{x}\right)\left|\frac{T-D}{n-x}\right| \\ f(x) &= \left(\frac{Dx}{x}\right)\left|\frac{T-D}{n-x}\right| \\ \end{array} \\ \\ \begin{array}{c} P[X = x + k \mid X \ge k] = P[X = x] \\ K[X \mid X \ge k] = P[X = x] \\ \text{Var}[X \mid X \ge k] = Var[X] \\ \end{array} \\ \begin{array}{c} F[X_{1}] = n p, \\ Var[X_{1}] = n p, (1-p_{i}) \\ Var[X_{1}] = n p, (1-p_{i}) \\ \end{array} \\ \begin{array}{c} f(x) = \frac{n!}{n-x} \\ x_{1} + x_{2} + \dots + x_{k} = n \\ \end{array} \\ \\ \begin{array}{c} M_{x}(t) = \frac{e^{kt} - e^{st}}{(b-a)^{t}} \\ \text{Note: This is an casy integral.} \\ \end{array} \\ \begin{array}{c} \mu = \frac{b+a}{2} \\ \sigma^{2} = \frac{(b-a)^{2}}{12} \\ \end{array} \\ \begin{array}{c} f(x) = \frac{1}{b-a} \\ a < x < b \\ \end{array} \end{array}$$

Actex – Ch. 07	Actex – Ch. 07	Actex – Ch. 07
Normal Distribution	Normal Distribution	Normal Distribution
Give $f(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_{X}(t)$.
Actex – Ch. 07	Actex – Ch. 07	Actex – Ch. 07
Exponential Distribution	Exponential Distribution	Exponential Distribution
Give $f(x)$, $F(x)$, and $S(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_{X}(t)$.
Actex – Ch. 07	Actex – Ch. 07	Actex – Ch. 07
Gamma Distribution	Gamma Distribution	Gamma Distribution
Give $f(x)$.	Give $E[x]$ and $Var[x]$.	Give $M_{X}(t)$.
Actex – Ch. 07	Actex – Ch. 07	Actex – Ch. 07
Exponential Distribution	Continuous Distributions	Distributions
State the consequences of the	State the relationship between the	State the relationship between the
Memoryless Property.	distributions.	distributions.
Actex – Ch. 07	Actex – Ch. 07	
Integer Correction	Exponential Distribution	Gamma Distribution
State the integer correction rule	Assume $Y_i \sim \operatorname{Exp}(\lambda_i)$ and	Let $X \sim GAM(\alpha, \beta)$. Find
used when approximating a discrete distribution. with a normal dist.	$Y = \min \{Y_1,, Y_n\}$. Describe distribution of Y.	$F_X(k)$ in terms of a a related Poisson distribution.

$M_{X}(t) = \exp\left[\mu t + \frac{\sigma^{2} t^{2}}{2}\right]$	μ σ^2	$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$ $-\infty < x < \infty$
$M_X(t) = \frac{\lambda}{\lambda - t}$	$\mu = \frac{1}{\lambda}$ $\sigma^2 = \frac{1}{\lambda^2}$	$f(x) = \lambda e^{-\lambda x}$ $F(x) = 1 - e^{-\lambda x}$ $S(x) = e^{-\lambda x}$ $x > 0$
$M_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$	$\mu = \frac{\alpha}{\beta}$ $\sigma^2 = \frac{\alpha}{\beta^2}$	$f(x) = \frac{\beta^{\alpha} \cdot x^{\alpha - 1} \cdot e^{-\beta x}}{\Gamma(\alpha)}$ $x > 0$ Note: $\Gamma(\alpha) = (\alpha - 1)!$ if $\alpha \in \mathbb{Z}$
$X = \text{time between events}$ $N = \# \text{ of events in one unit of time}$ If $X \sim \text{Exp}(\lambda)$, then $N \sim \text{Poisson}(\lambda)$ Also note: $\mu_X = \frac{1}{\lambda}$, and $\mu_N = \lambda$	$Gamma(\alpha=1,\beta=\lambda) \sim Exp(\lambda)$	$P[X > x + k \mid X > k] = P[X > x]$ $E[X \mid X \ge k] = E[X] + k$ $Var[X \mid X \ge k] = Var[X]$
Let $X \sim GAM(\alpha, \beta)$. Let $Y \sim POI(\lambda = \beta k)$. $F_X(k) = 1 - F_Y(\alpha - 1)$	$Y \sim \operatorname{Exp}(\lambda_1 + \lambda_2 + \dots + \lambda_n)$	If X is discrete and Y is normal, then: $P[a \le X \le b]$ $\approx P[a-0.5 \le Y \le b+0.5]$

Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Joint Distributions Define $F(x, y)$. (Discrete and Continuous)	Joint Distributions X, Y - jointly dist with pdf $f(x, y)$ Give $P[(x, y) \in R]$	Joint Distributions Given $F(x, y)$, find $f(x, y)$. (Continuous case)
Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Joint Distributions Given $f(x, y)$, find $E[h(x, y)]$. (Discrete and Continuous)	Marginal Distributions Given $f(x, y)$, find $f_x(x)$. (Continuous case)	Marginal Distributions Given $f(x, y)$, find $f_X(x)$ and $F_X(x)$. (Continuous case)
Actex – Ch. 08	Actex – Ch. 08	
Marginal Distributions Given $f(x, y)$, find $f_x(x)$ and $F_x(x)$. (Discrete case)	Marginal Expectation Given jointly distributed variables X and Y , find $E[X](Discrete and Continuous)$	
Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Conditional Distributions Given $f(x, y)$, find g(x y) and $h(y x)$.	Conditional Distributions Given $f(x, y)$, find $P[a \le X \le b Y = k]$.	Conditional Distributions Write $f(x, y)$ in terms of marginal and conditional pdf's.
Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Conditional Expectation Find $E[X Y=k]$. (Discrete and Continuous)	Conditional Expectation Find $E[E[X Y]]$.	Conditional Variance Find $\operatorname{Var}[X Y = k]$

$$\frac{\partial^2}{\partial x \partial y} F(x, y) = f(x, y)$$

$$P[(x, y) \in R] = \iint_{\mathbb{R}} f(s, t) dt$$

$$F(x, y) = \sum_{x \in I_{n}} \sum_{x} f(s, t)$$

$$F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) dt ds$$

$$f_x(x) = \int_{-\infty}^{x} f(x, y) dy$$

$$F_x(x) = P[X \le x] = \int_{-\infty}^{x} f_x(t) dt$$

$$\sum_{x \neq f_x(x) = \int_{-\infty}^{y} f(x, y) dy$$

$$F_x(x) = P[X \le x] = \int_{-\infty}^{x} f_x(t) dt$$

$$F[X] = \sum_{x \neq x} f_x(x)$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx dy$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)} f(x, y) dx$$

$$F_x(x) = P[X = x] = \sum_{y \neq f_x(x)}$$

Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Law of Total Variance Represent $Var[X]$ using the Law of Total Variance.	Covariance 1) Give definition of Cov[<i>X</i> , <i>Y</i>]. 2) Explain the relationship between variance and covariance.	Correlation Coefficient Define $\rho(X, Y)$.
Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Covariance Cov[a X, b Y] = ? Cov[X+a, Y+b] = ?	Joint Distributions 1) Define $M_{X,Y}(t_1, t_2)$. 2) Give $E[X^n Y^m]$ in terms of $M_{X,Y}(t_1, t_2)$.	Bivariate Normal If X and Y have a bivariate normal distribution, then X, Y, $X Y=k$, and $Y X=k$ are all normal. E[X Y=k] = ? Var[X Y=k] = ?
Actex – Ch. 08	Actex – Ch. 08	Actex – Ch. 08
Joint Distributions X and Y are indep if and only if: 1. $f(x, y) = ?$ 2. $F(x, y) = ?$ 3. $g(x y)=?$ and $h(y x)=?$	Joint Distributions If X and Y are independent, then: 1. $E[X Y] = ?$ 2. $E[X Y = k] = ?$ 3. $E[Y X = k] = ?$	Joint Distributions If X and Y are independent, then: 1. $Cov[X, Y] = ?$ 2. $\rho_{X, Y} = ?$

$\rho(X,Y) = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y}$	$\operatorname{Cov}[X, Y] = E[XY] - E[X]E[Y]$ $\operatorname{Cov}[X, X] = \operatorname{Var}[X]$	$\operatorname{Var}[X] = E_{Y}[\operatorname{Var}[X Y]] + \operatorname{Var}_{Y}[E[X Y]]$ See Actex – Section 8, #45 for an example.
E[X Y=k] = $\mu_{X} + \rho_{XY} \frac{\sigma_{X}}{\sigma_{Y}} (y - \mu_{Y})$ $Var[X Y=k] = \sigma_{X}^{2} (1 - \rho_{XY}^{2})$	$M_{X,Y}(t_{1},t_{2}) = E\left[e^{t_{1}X+t_{2}Y}\right]$ $E\left[X^{n}Y^{m}\right] = \frac{\partial^{n+m}}{\partial^{n}t_{1}\partial^{m}t_{2}}M_{X,Y}(t_{1},t_{2})\Big _{t_{1}=t_{2}=0}$	$\operatorname{Cov}[a X, bY] = ab \operatorname{Cov}[X, Y]$ $\operatorname{Cov}[X+a, Y+b] = \operatorname{Cov}[X, Y]$
If X and Y are independent, then: 1. $\operatorname{Cov}[X, Y] = 0$ 2. $\rho_{X,Y} = 0$ Note: The converse is not always true.	If X and Y are independent, then: 1. $E[XY] = E[X]E[Y]$ 2. $E[X Y=k] = E[X]$ 3. $E[Y X=k] = E[Y]$ Note: The converse is not always true.	X and Y are indep if and only if: 1. $f(x, y) = f_X(x) \cdot f_y(y)$, and prob. space is a rectangle 2. $F(x, y) = F_X(x) \cdot F_y(y)$ 3. $g(x y) = f_X(x)$ and $h(y x) = f_Y(y)$

Actex – Ch. 09	Actex – Ch. 09	Actex – Ch. 09
Single Variable Transformations	Multivariate Transformations	Sums of Random Variables
Y = u(X) and $X = v(Y)$. Find $f_Y(y)$ and $F_Y(y)$.	Given a transformation $(X, Y) \rightarrow (U, V)$, find $g(u, v)$.	Let $Y = \sum_{i=1}^{n} X_i$. Find $E[Y]$ and $Var[Y]$.
Actex – Ch. 09	Actex – Ch. 09	Actex – Ch. 09
Sums of Random Variables Assume $X = \sum_{i=1}^{n} X_i$ and $Y = \sum_{i=1}^{m} Y_i$. Find $Cov[X, Y]$.	Sums of Random Variables (Discrete Convolution Method) If $Y = X_1 + X_2$ and $X_1, X_2 \ge 0$, then $f_Y(y) = ?$	Sums of Random Variables (Continuous Convolution Method) If $Y = X_1 + X_2$, then $f_Y(y) = ?$
Actex – Ch. 09	Actex – Ch. 09	Actex – Ch. 09
Central Limit Theorem $X_1,, X_n$ are IID and $Y = \sum_{i=1}^n X_i$. What does CLT say about distribution of Y?	Central Limit Theorem $X_1,, X_n$ are IID and $X = \frac{1}{n} \sum_{i=1}^n X_i$ What does CLT say about distribution of \overline{X} ?	Mixtures of Distributions Assume $X = \begin{cases} X_1 & \text{with prob } p_1 \\ X_2 & \text{with prob } p_2 \end{cases}$ Find $f(x)$, $E[X]$, and $E[X^2]$.
Actex – Ch. 09	Actex – Ch. 09	Actex – Ch. 09
Minimum and Maximum X_1, \dots, X_n are mutually independent. Find $F_{max}(x)$ and $S_{min}(x)$.	Order Statistics Let Y_1, \dots, Y_n be order statistics for independent observations of X. Find the joint pdf, $g(y_1, \dots, y_n)$.	Order Statistics Let Y_1, \dots, Y_n be order statistics for independent observations of X. Find the marginal pdf, $g_k(t)$.
Actex – Ch. 10	Actex – Ch. 10	Actex – Ch. 10
Deductible Let $Y = \begin{cases} 0 & \text{if } X \le d \\ x - d & \text{if } X > d \end{cases}$ Find $E[Y]$.	Policy Limit Let $Y = \begin{cases} X & \text{if } X \le u \\ u & if & X > u \end{cases}$ Find $E[Y]$.	Deductible and Policy Limit Let $Y = \begin{cases} 0 & \text{if } X \le d \\ X - d & \text{if } d < X < d + u \\ u & \text{if } X > d + u \end{cases}$ Find $E[Y]$.