
Basic Probability Rules

Addition Rule:   P( A∪ B )= P (A)+ P (B)− P (A∩ B)

Multiplication Rule: P( A∩B) = P( A∣B)P (B) = P (B∣A)P (A)

Conditional Probability:     P(A ∣B) =
P(A ∩ B )
P(B)

Baye's Rule:  P( A1∣B )=
P(B ∣A1)P (A1)

∑ P (B ∣ Ai )P (Ai )

DeMorgan's Laws: P [(A∪ B)′]= P (A ′∩ B ′)
P [(A∩ B)′ ]= P (A ′∪ B ′)

Law of Total Probability:   P(B) = P(B ∩ A)+ P (B∩ A′)
A and B are independent (A⊥B )  if & only if:
• P (A∩ B) = P( A) P(B )

• P (A∣ B)= P (A)

• P(B ∣A) = P(B )

Combinatorics

Multiplication Rule: The number of ways to make n  choices, having
k i  options for choice number i , is equal to k 1⋅k2⋅...⋅k n .

Permutations of n objects:  n !

Permutations of k out of n objects:    nP k = n !
(n − k )!

Partitions: The number of ways to partition n  objects into k  non-
overlapping groups with sizes n1 , n2 , ... , nk  is equal to:

• ( n
n1n2⋯n t)=

n!
n1 !⋅n2 !⋅…⋅nt !

Combinations: The number of ways to choosing k out of n objects:

• nC k = (nk)=
n!

k !⋅(n−k )!

Distribution and Density Functions

Discrete Distribution Functions
PMF:   f ( x ) = P [ X = x ] ,   P [a≤ x≤ b] =∑x=a

b
f ( x )

CDF:    F ( x ) = P [ X ≤x ] = ∑x=a

b
f (x )

Survival Fn:  S (x ) = P [X> x ] = 1− F ( x)

Continuous Distribution Functions

PDF:  f (x )≈ 1
2 ε
P [x−ε < x< x+ε] ,   P [a≤ x≤ b] =∫a

b
f ( x )dx

CDF:  F ( x ) = P [X ≤x ] = ∫−∞

x
f (t )dt

Survival:  S (x ) = P [X> x ] = 1− F (x)

Derivatives:  F ′(x ) = −S ′(x ) = f ( x )

Hazard Rate:  h( x ) =
f (x)

1− F ( x)
= −

d
dx

ln [1 − F (x )]

Summation & Integration Formulas

The following formulas are useful to know:

• 1+ 2+ 3 + ...+ n =
n(n + 1)

2

• a + a r + a r2 + ... + a rn− 1 =
a −a rn

1 − r

• a + a r + a r
2
+ a r

3
+... =

a
1− r

, ∣r∣<1

• 1+2 r+3 r
2
+4 r

3
+ ... =

1
(1−r)2

, ∣r∣<1

• ∫0

∞

xk e−ax dx =
k !
ak+1

Moments and MGF's

Expected Value (Discrete): E [X ] =∑ x f (x )

E [h (X )] =∑ h( x ) f ( x )

Expected Value (Continuous): E [ X ] =∫−∞

∞

x f (x )dx

E [h (X )] =∫−∞

∞

h(x ) f (x)dx

Darth Vader Rule: If X ≥0 , then E [X ] =∫0

∞

S ( x )dx

Variance: Var [X ] = E [( X−μ )2] = E [X 2 ]−(E [ X ] )
2

Algebraic Properties:   E [a X + b ] = a E [X ] + b

    Var [a X + b ] = a2 Var [ X ]

Moments
• n-th Moment:  E [X n ]  
• n-th Central Moment:  E [(X −μ )n]

Moment Generating Functions

MGF Definition:  M X (t) = E [ et X ]

MGF Properties:

• M X (0)= 1

• M ′X (0) = E [X ]   and  M X
(n)
(0) = E [ X n ]

• 
d 2

dt2
ln[M X( t)]∣t =0

= Var [X ]

• If X is discrete with f (x i)=p i , then M X (t) =∑ p ie
t xi .

Conditional Expectations

• E [X ∣a < X < b ] =
1

F (b)−F (a)
∫
a

b

x f ( x )dx

• E [X ∣X < k ] = 1
F (k )

∫
−∞

k

x f (x )dx

• E [X ∣X > k ] = 1
S (k )

∫
k

∞

x f ( x )dx

Miscellaneous Formulas

• Skewness:  
E [( X −μ )3 ]

σ
3

• Coefficient of Variation:  cv = σ / μ

• 100p-th Percentile:  F (π p ) ≥ p

• Chebyshev's Ineq: P [∣X−μX∣>r σX ] ≤
1
r2



Joint Distributions

Joint PDF and CDF

Discrete

• PMF:   f ( x , y ) = P [ X = x  and Y = y ]

• CDF:   F ( x , y ) = P [X ≤ x  and Y ≤ y ] = ∑
s≤ x
∑
t≤y

f ( s , t)

Continuous
• PDF:   f ( x , y )  = joint density function

• CDF:   F ( x , y ) = P [X ≤ x  and Y ≤ y ] = ∫−∞

x

∫−∞

y
f (s , t)dt ds

• P [( X ,Y )∈ R ]=∬R
f (s , t)dt ds

• 
∂2

∂ x∂ y
F (x , y )= f (x , y)

Marginal Distributions

Discrete:  

• Marginal PMF: f X ( x) = P [X = x] = ∑
y

f ( x , y )

• Marginal CDF: F X ( x ) = P [ X ≤ x ] = ∑
t≤ x

f X( t)

Continuous:

• Marginal PDF: f X ( x) = ∫−∞

∞

f (x , y)dy

• Marginal CDF: F X ( x ) = P [X ≤ x ] = ∫−∞

x
f X (t )dt

Conditional Distributions

Shorthand Notation

• g(x ∣ y ) = f X ∣Y (x ∣Y= y )

• h( y∣ x )= f Y ∣ X ( y∣ X= x )

Definition and Basic Properties

• g (x ∣ y )= f ( x , y )
f Y (y )

• h (y ∣ x) = f (x , y)
f X (x)

• P [a≤X ≤b ∣Y=k ] = ∫a

b

f ( x ∣k )dx =
1

f Y (k )
∫a

b

f ( x , k )dx

• f ( x , y ) = g (x ∣ y ) f Y ( y) = h( y ∣ x ) f X (x )

Expected Values and Variance

Expected value of h(X ,Y )

• Discrete:       E [h( X ,Y )] = ∑
x
∑
y

h( x , y )⋅ f ( x , y )

• Continuous:  E [h( X ,Y )] = ∫
−∞

∞

∫
−∞

∞

h( x , y ) f (x , y)dx dy

• E [X + Y ] = E [X ] + E [Y ]

Marginal Expectation

• E [X ] = ∑
x

x f X ( x )  

• E [X ] =∫−∞

∞

x f X ( x )dx

Conditional Expectation

• E [X ∣Y=k ] = ∑
x

x g (x ∣k )

• E [X ∣Y=k ] = ∫−∞

∞

x g ( x∣ k )dx

• EY [E X [ X ∣Y ] ] = E [X ]

Conditional Variance

• Var [X ∣Y=k ] = E [X 2
∣ k ]+ (E [ X ∣ k ] )

2

Law of Total Variance

• Var [X ] = EY [Var [X∣Y ] ]+VarY [E [X∣Y ] ]

Joint Distributions (Continued)

Covariance

Definition:  Cov [X ,Y ] = E [ X Y ]− E [X ]E [Y ]

Properties of Covariance

• Cov [X , X ] = Var [ X ]

• Var [X + Y ] = Var [X ]+Var [Y ]+ 2 Cov [X , Y ]
s

• Cov [a X , bY ] = a bCov [X , Y ]

• Cov [X + a , Y + b ] = Cov [X , Y ]

Correlation Coefficient:  ρX , Y =
Cov [X ,Y ]

σ X σY

Independence of Random Variables

If one of the following statements are true, then they all are:

• X  and Y  are independent (A⊥B ) .

• f ( x , y ) = f X(x )⋅f Y ( y)  and R is a (possibly infinite) rectangle.

• F (x , y ) = F X( x )⋅FY ( y )

• g (x ∣ y ) = f X (x )  and h (y ∣ x) = f Y (y )

The following statements are true if X and Y are independent, but do 
not themselves imply independence:

• E [X Y ] = E [X ]⋅E [Y ]

• E [ g( X )h(Y )] = E [ g (X )]⋅E [ h(Y )]

• E [X ∣Y=k ] = E [X ]  and E [Y ∣X=k ] = E [Y ]

• Cov [X ,Y ]= 0

• ρX , Y = 0

Joint Moment Generating Functions

• M X ,Y ( s , t) = E [e s X + tY ]

• E [X ] = ∂
∂ s
M X ,Y ( s , t) ∣

s=t=0

• E [Y ] = ∂
∂ t
M X ,Y ( s , t)∣

s= t=0

• E [X nY m ] = ∂n+m

∂
n
s ∂

m
t
M X , Y ( s , t)∣

s= t=0

• M X ,Y ( t , t) = M X+Y (t)

Bivariate Normal Distribution

If X and Y have a bivariate normal distribution, then:
• X and Y are both normally distributed.

• The conditional variables  X ∣(Y=k )  and Y ∣ (X=k )  are normally
distributed.

• E [X ∣Y= y ] = μX + ρX Y
σX
σY ( y−μY ) = μX +

Cov [X ,Y ]
Var [Y ]

( y−μY )

• Var [X ∣Y= y ] = σX
2 (1− ρX Y

2 )

Mixtures of Distributions

Assume p1 + p2 = 1  and X 1  and X 2  are random variables.  Let X  

be defined as follows:  P [X =x 1 ]= p1  and P [X =x 2 ]= p2 . Then:

• f ( x ) = p1 f 1(x )+ p2 f 2(x )

• E [X ] = p1E [ X 1 ] + p2E [X 2 ]

• E [X 2 ] = p1E [ X 1
2]+ p2 E [X 2

2]
• M X (t) = p1M X 1

(t) + p2M X 2
( t)

Note:  Var [X ] ≠ p1Var [X 1 ]+ p2Var [X 2 ] .     

Instead, use Var [X ] = E [X 2 ]−(E [X ] )
2



Transformations

Single Variable
Suppose that X is a continuous random variable with density f X (x ) . 
Assume Y = u( X )  is a one-to-one trans. with inverse X = v (Y ) .

• f Y (y ) = f X (v ( y))⋅∣v ′( y)∣
• If v (y )  is increasing, then FY ( y ) = F X (v ( y))

Multiple Variable
Suppose X and Y have joint density f ( x , y )  and that that U and V are 
functions of X and Y. Let x (u , v )  and y (u , v )  refer to expressions for
x and y, written in terms of u and v.  The joint pdf of U and V is given by:

• g(u ,v ) = f (x (u , v ) , y (u , v ))∣J∣

• Note that J = ∣x u x v
yu y v∣  

Min/Max and Order Statistics

Minimum and Maximum

Suppose X 1 , ... , X n  are independent random variables with CDF's and
survival functions given by F1( x ) , ... , F n( x)  and S 1( x ) , ... , Sn( x ) .

• Fmax (x ) = F 1(x)⋅F 2( x )⋅...⋅Fn( x )

• S min(x ) = S1(x )⋅S 2(x)⋅...⋅S n(x)

• Fmin (x) = 1 − [1 − F1(x )]⋅...⋅[1 − F n( x)]

Order Statistics

Suppose X 1 , ... , X n  are independent observations of a variable X , 
and Y 1, ... , Y n  are the associated order statistics.  Let g  be the joint 
pdf of the order statistics and let gk  be the marginal pdf of Y k .  

• g( y1 , ... , yn) = n! f (y 1)⋅ f ( y2)⋅ ...⋅ f ( yn) , where
y1 ≤ y2 ≤ ... ≤ yn

• gk (t) = k(nk)[F ( t)]
k−1 [S (t )]n− k f (t)

Insurance and Risk Management

Notation

• Let X = Loss associated with a claim.

• Let Y = Amount paid by insurer.

Deductible = d

• Y = { 0 if X ≤d
x−d if X >d

• E [Y ] = ∫d

∞

(x−d ) f X (x )dx = ∫d

∞

S X ( x )dx

Policy Limit = u

• Y = {X if X≤u
u if X >u

• E [Y ] = ∫0

u
x f X (x )dx+ u S X (u) = ∫0

u
S X ( x)dx

Deductible = d   and   Policy Limit = u

• Y = {
0 if X≤d

X−d if d<X<d+u
u if X >d+u

• E [Y ] = ∫d

d+u
(x−d ) f X (x )dx+u S X(d+u) = ∫d

d+u
S X (x )dx

Sum of Random Variables

Expected Value and Variance

Assume Y =∑
i= 1

n

X i . Then:

• E [Y ] = E [X 1 ]+ E [ X 2 ] + ...+ E [X n ]

• Var [Y ] = ∑Var [X i ]+ 2∑∑Cov [ X i , X j ]  

• Note:  (X ⊥ Y ) ⇒ Cov [X ,Y ]= 0

Covariance

Assume X =∑
i= 1

n

X i  and Y =∑
i=1

m

Y i . Then: 

• Cov [X ,Y ] = ∑
n
∑
m

Cov [X i , Y j ]

Convolution Method (Discrete)

Let Y = X 1 + X 2 , where X 1 , X 2≥ 0 .  Then f Y ( y)  is given by:

• f Y (y ) = ∑
x 1 =0

y

f (x1 , y− x1)

• (X ⊥Y ) ⇒ f Y ( y) = ∑
x1 = 0

y

f 1( x1) f 2(y−x1)

Convolution Method (Continuous)

Let Y = X 1 + X 2 .  Then f Y ( y)  is given by:

• f Y (y ) = ∫
−∞

∞

f ( x1 , y− x1)d x1

• (X ⊥Y ) ⇒ f Y ( y) =∫
−∞

∞

f 1( x1) f 2 (y− x1)d x1

• ( X1 , X 2≥ 0) ⇒ f Y (y )=∫
0

y

f ( x1 , y−x 1)d x1
 

Moment Generating Functions

If Y =∑
i=1

n

X i  and the X i 's are  pairwise independent, then:

• M Y ( t)= M X 1
(t)⋅M X 2

(t )⋅ ...⋅M X n
(t )

Central Limit Theorem

• Assume X 1, ... , X n  are independent and identically distributed 

(IID) with mean μ  and variance σ2 , and let Y =∑ i=1

n
X i .

• Then E [Y ] =nμ  and Var [Y ] =nσ 2 .

• If n is large, then Y ∼
approx

N (nμ , nσ2) .

Sums of Specific Distributions

Assume X 1 , ... , X k  are independent random var's and Y =∑i =1

k
X i . 

Distribution of X i Distribution of Y

Bernoulli,  BIN (1, p) Binomial,  BIN (k , p)

Binomial,  BIN (n i , p) Binomial,  BIN (∑ n i , p)
Poisson,  mean λi Poisson,  mean ∑λ i

Geometric,  p Neg Binom,  k , p

Neg Binom,  r i , p Neg Binom,  ∑ r i , p

Normal,  N (μi ,σi
2) Normal,  N (∑μi ,∑ σ i

2)
Exp,  mean μ Gamma,  α=k ,β=1/μ

Gamma,  αi ,β Gamma,  ∑α=αi ,β=β

Chi-Square,  k i  df Chi-Square,  ∑ k i  df



Discrete Distributions

Distribution Parameters f ( x ) E [x ] Var [x ] M x (t) Description

Uniform
X ∼UNIF (N )

N > 0  

N  an integer

1
N

x= 1, 2, ... , N

N + 1
2

N 2 −1
12

e
t (eNt − 1)
N (et− 1)

Each outcome x=1, 2, ... , N  is 
equally likely. 

Bernoulli
X ∼ BIN (1, p)

 0< p<1 {q  if x=0
p  if x=1

x=0, 1

p p q q + pe t
X=0  indications “failure”
X=1  indicates “success”

Binomial
X ∼ BIN (n , p)

n > 0

n  an integer
0 < p < 1

(nx) p
xqn− x

x= 0, 1, ... , n

n p n p q (q + p e
t )
n X = number of successes in n trials

Poisson
X ∼ POI (λ )

λ > 0
e−λλ x

x !

x=0,1,2,. ..

λ λ eλ (e
t
−1) X = number of times an event occurs 

in a unit of time or space

Geometric
X ∼GEO ( p )

0 < p < 1
qx− 1 p

x=1,2,3,. ..

1
p

q
p2

p et

1−q et
X = number of trials required to get 
first success. 

Negative 
Binomial
X ∼ NB (r , p )

r > 0

0 < p < 1
(r+ x−1

x ) prqx

x=0,1,2,. ..

r
p

r q
p2 [ pe

t

1− q et ]
r X = number of trials required to get r 

successes. 

Hyper-
geometric
X∼HYP (N ,r ,n )

N > 0

0≤ r ≤ N

1≤ n ≤ N
All are integers

(rx)(N−rn−x )
(Nn )

x≤min [n , K ]

n( rN ) n( rN )(N − r
N )( N − n

N −1 )

r objects of desired type
T objects total
n = sample size
X = number of desired objects  
       in sample

Continuous Distributions

Distribution Parameters f ( x ) E [x ] Var [x ] M x (t) Comments

Uniform
X ∼UNIF ( a ,b)

a < b

1
b −a

a < x <b

b + a
2

(b − a )
2

12

eb t− ea t

(b −a )⋅t

Pareto
X ∼ PAR (a , n)

a > 0

n > 1

n an

xn+1
na
n −1

na2

(n −1)2 (n − 2)

for n > 2

Not a simple
function.

Normal
X ∼ N (μ , σ2)

μ ∈ ℝ

σ2 > 0

1
σ⋅√2π

e
−

(x−μ)
2

2σ2

−∞ < x < ∞

μ σ2 exp[μt + σ2 t 2

2 ]

Exponential
X ∼ EXP (λ )

λ > 0

λ e−λ x

x> 0

F ( x )= 1 − e−λ x

1
λ

1

λ 2

λ

λ − t

No memory property:
P [X > x+y ∣ X> x ]= P [X > y ]

Used to model time between events.

Gamma
X ∼GAM (α ,β)

α> 0

β > 0

xα−1⋅e− x/β

βαΓ(α )

x> 0

αβ αβ2 (1−β t )
−α

If X i ∼EXP (λ )  and Y = X 1 + ... + X n  
then Y ∼ GAM (n , 1/λ ) . 
It follows that GAM (1, 1/λ ) ∼EXP (λ ) .

Chi-Square
X ∼χ 2 (n)

n = 1, 2, ...

xn /2−1e−x /2

2n /2Γ ( n/2)

x> 0

v 2 v (1− 2 t )
−n /2 X ∼χ 2 (n ) ⇔ X ∼ GAM ( n2 ,2)

Additional comments:
• Relationship between Poisson and Exponential:  Assume X = the time between successive events, and has an exponential distribution with mean 1/λ . 

Let  N = the number of events occurring in one unit of time.  Then N has a Poisson distribution with mean λ .
• Gamma CDF:  Assume X ∼ GAM (α ,β) , where α ∈ ℤ+ . Let k>0 , λ =β k , and Y ∼ POI (λ) . Then F X (k ) = 1− F Y (α−1) .
• MIN of Exponential Variables:  Assume Y 1 , Y 2 , ... , Y n  have exponential distributions with means 1/λ1 , 1/λ 2 , ... , 1/λ n . Let

Y = min {Y 1 , Y 2 , ... , Y n} . Then Y has an exponential distribution with mean 1/(λ 1+ λ 2 + ...+ λn) .


