Basic Probability Rules

Addition Rule: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ *Multiplication Rule:* $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$ **Conditional Probability:** $P(A | B) = \frac{P(A \cap B)}{P(B)}$ *P*(*B*) **Baye's Rule:** $P(A_1 | B) = \frac{P(B | A_1) P(A_1)}{\sum_{i=1}^{n} P(B_i | A_i) P(A_i)}$ $\sum P(B \mid A_i) P(A_i)$ **DeMorgan's Laws:** $P[(A \cup B)'] = P(A' \cap B')$ $P[(A \cap B)']=P(A' \cup B')$ Law of Total Probability: $P(B) = P(B \cap A) + P(B \cap A')$ *A* **and** *B* **are independent** (*A*⊥*B*) **if & only if:** • $P(A \cap B) = P(A) P(B)$ • $P(A|B) = P(A)$

• $P(B|A) = P(B)$

Combinatorics

Multiplication Rule: The number of ways to make *n* choices, having k_i options for choice number i , is equal to $k_1 \cdot k_2 \cdot ... \cdot k_n$. **Permutations of** *n* **objects:** *n !*

Permutations of *k* **out of** *n* **objects:** $nPk = \frac{n!}{n!}$

Partitions: The number of ways to partition *n* objects into *k* nonoverlapping groups with sizes n_1 , n_2 , ..., n_k is equal to:

(*n* − *k*)*!*

$$
\bullet \quad \binom{n}{n_1 n_2 \cdots n_t} = \frac{n!}{n_1! \cdot n_2! \cdots n_t!}
$$

Combinations: The number of ways to choosing *k* out of *n* objects:

• $nCk = \binom{n}{k} = \frac{n!}{k!(n-k)!}$ *k !*⋅(*n*−*k*)*!*

Distribution and Density Functions

Discrete Distribution Functions

PMF: $f(x) = P[X = x]$, $P[a \le x \le b] = \sum_{x=a}^{b} f(x)$ **CDF:** $F(x) = P[X \le x] = \sum_{x=a}^{b} f(x)$ **Survival Fn:** $S(x) = P[X > x] = 1 - F(x)$

Continuous Distribution Functions

PDF: $f(x) \approx \frac{1}{2}$ $\frac{1}{2 \epsilon} P[x-\epsilon < x < x+\epsilon]$, $P[a \le x \le b] = \int_a^b f(x) dx$ **CDF:** $F(x) = P[X \le x] = \int_{-\infty}^{x} f(t) dt$ **Survival:** $S(x) = P[X > x] = 1 - F(x)$ **Derivatives:** $F'(x) = -S'(x) = f(x)$ **Hazard Rate:** $h(x) = \frac{f(x)}{1 - F(x)}$ $\frac{f(x)}{1 - F(x)} = -\frac{d}{dx}\ln[1 - F(x)]$

Summation & Integration Formulas

The following formulas are useful to know:

• 1 + 2 + 3 + ... + *n* = $\frac{n(n+1)}{2}$ 2 • $a + ar + ar^{2} + ... + ar^{n-1} = \frac{a - ar^{n}}{1 - r}$ 1 −*r* • $a + ar + ar^{2} + ar^{3} + ... = \frac{a}{1}$ $\frac{a}{1-r}$, |*r*|<1 • $1+2r+3r^2+4r^3+... = \frac{1}{(1)}$ $\frac{1}{(1-r)^2}$, |*r*|<1

•
$$
\int_0^\infty x^k e^{-ax} dx = \frac{k!}{a^{k+1}}
$$

Moments and MGF's

Expected Value (Discrete): $E[X] = \sum x f(x)$ $E[h(X)] = \sum h(x) f(x)$ $\textsf{Expected Value (Continuous):} \quad E[X] = \int_{-\infty}^{\infty} x \, f(x) dx$ $E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) dx$ **Darth Vader Rule:** If $X \ge 0$, then $E[X] = \int_0^\infty S(x) dx$ ${\sf Variance:} \quad \mathrm{Var}[X] \;=\; E\big[(X-\mu)^2\big] \;=\; E\big[X^2\big]-\big(E\,[\,X\,]\big)^2$ Algebraic Properties: $E[a X + b] = a E[X] + b$ $Var[a X + b] = a^2 Var[X]$

Moments

• *n*-th Moment: $E[X^n]$ • *n*-th Central Moment: $\left|E\right|(X-\mu)^n\right|$

Moment Generating Functions

MGF Definition: $M_X(t) = E[e^{tX}]$

MGF Properties:

• $M_X(0)=1$ • $M'_{X}(0) = E[X]$ and $M_{X}^{(n)}(0) = E[X^{n}]$

•
$$
\frac{d^2}{dt^2} \ln [M_X(t)]|_{t=0} = \text{Var}[X]
$$

• If *X* is discrete with $f(x_i) = p_i$, then $M_x(t) = \sum p_i e^{tx_i}$.

Conditional Expectations

•
$$
E[X | a < X < b] = \frac{1}{F(b) - F(a)} \int_{a}^{b} x f(x) dx
$$

\n• $E[X | X < k] = \frac{1}{F(k)} \int_{-\infty}^{k} x f(x) dx$
\n• $E[X | X > k] = \frac{1}{S(k)} \int_{k}^{\infty} x f(x) dx$

Miscellaneous Formulas

• Skewness:
$$
\frac{E[(X-\mu)^3]}{\sigma^3}
$$

• Coefficient of Variation:
$$
c_v = \sigma / \mu
$$

• **100p-th Percentile:** $F(\pi_p) \geq p$

• Chebyshev's Ineq: $P\big[|X-\mu_X|\geq r\,\sigma_X\big]\,\leq\,\frac{1}{\omega^2}$ *r* 2

Joint Distributions

Joint PDF and CDF

Discrete

• PMF: $f(x, y) = P[X = x \text{ and } Y = y]$ • CDF: $F(x, y) = P[X \le x \text{ and } Y \le y] = \sum_{s \le x} \sum_{t \le y} f(s, t)$

Continuous

- PDF: $f(x, y) =$ joint density function
- CDF: $F(x, y) = P[X \le x \text{ and } Y \le y] = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) dt ds$ • $P[(X, Y) \in R] = \iint_R f(s, t) dt ds$
- $\cdot \frac{\partial^2}{\partial x^2}$ $\frac{\partial}{\partial x \partial y} F(x, y) = f(x, y)$

Marginal Distributions

Discrete:

• Marginal PMF: $f_x(x) = P[X = x] = \sum_{y} f(x, y)$ • Marginal CDF: $F_x(x) = P[X \le x] = \sum_{t \le x} f_x(t)$

Continuous:

- Marginal PDF: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$
- Marginal CDF: $F_x(x) = P[X \le x] = \int_{-\infty}^{x} f_x(t) dt$

Conditional Distributions

Shorthand Notation

• $g(x | y) = f_{x | y}(x | Y = y)$

• $h(y | x) = f_{Y | X}(y | X = x)$

Definition and Basic Properties

- $g(x | y) = \frac{f(x, y)}{f(x)}$ $f_Y(y)$
- $h(y | x) = \frac{f(x, y)}{f(x)}$ $f_{\overline{X}}(x)$
- $P[a \le X \le b | Y = k] = \int_{a}^{b} f(x | k) dx = \frac{1}{f(a)}$ $\frac{1}{f_Y(k)}$ $\int_a^b f(x, k) dx$
- $f(x, y) = g(x | y) f_y(y) = h(y | x) f_x(x)$

Expected Values and Variance

Expected value of $h(X, Y)$

- Discrete: $E[h(X, Y)] = \sum_{x} \sum_{y} h(x, y) f(x, y)$ • Continuous: $E[h(X, Y)] = \int_{-\infty}^{\infty}$ ∞ ∫ −∞ $\int_a^{\infty} h(x, y) f(x, y) dx dy$
- $E[X + Y] = E[X] + E[Y]$

Marginal Expectation

- $E[X] = \sum_{x} x f_{x}(x)$
- $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

Conditional Expectation

- $E[X | Y=k] = \sum_{x} x g(x|k)$
- $E[X | Y = k] = \int_{-\infty}^{\infty} x g(x | k) dx$
- \bullet $E_Y |E_X| X |Y|| = E |X|$

Conditional Variance

•
$$
Var[X | Y = k] = E[X^2 | k] + (E[X | k])^2
$$

Law of Total Variance

• $Var[X] = E_Y[Var[X|Y]] + Var_Y[E[X|Y]]$

Joint Distributions (Continued)

Covariance

Definition: $Cov[X, Y] = E[XY] - E[X]E[Y]$

Properties of Covariance

\n- \n
$$
\text{Cov}[X, X] = \text{Var}[X]
$$
\n
\n- \n
$$
\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + 2\text{Cov}[X, Y]
$$
\n
\n- \n
$$
\text{Cov}[aX, bY] = ab\text{Cov}[X, Y]
$$
\n
\n- \n
$$
\text{Cov}[X + a, Y + b] = \text{Cov}[X, Y]
$$
\n
\n
\n\nCorrelation Coefficient: \n
$$
\rho_{X,Y} = \frac{\text{Cov}[X, Y]}{\sigma_X \sigma_Y}
$$
\n

Independence of Random Variables

If one of the following statements are true, then they all are:

- *X* and *Y* are independent $(A \perp B)$.
- $f(x, y) = f(x) f_Y(y)$ and R is a (possibly infinite) rectangle.

•
$$
F(x, y) = F_x(x) \cdot F_y(y)
$$

• $g(x|y) = f_x(x)$ and $h(y|x) = f_y(y)$

The following statements are true if *X* and *Y* are independent, but do not themselves imply independence:

• $E[X Y] = E[X] \cdot E[Y]$ • $E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$ • $E[X | Y = k] = E[X]$ and $E[Y | X = k] = E[Y]$ • Cov $[X, Y] = 0$ • $\rho_{X,Y} = 0$

Joint Moment Generating Functions

•
$$
M_{X,Y}(s,t) = E[e^{sX+tY}]
$$

\n• $E[X] = \frac{\partial}{\partial s} M_{X,Y}(s,t)|_{s=t=0}$
\n• $E[Y] = \frac{\partial}{\partial t} M_{X,Y}(s,t)|_{s=t=0}$
\n• $E[X^nY^m] = \frac{\partial^{n+m}}{\partial^n s \partial^n t} M_{X,Y}(s,t)|_{s=t=0}$
\n• $M_{X,Y}(t,t) = M_{X+Y}(t)$

Bivariate Normal Distribution

If *X* and *Y* have a bivariate normal distribution, then:

- *X* and *Y* are both normally distributed.
- The conditional variables $X | (Y = k)$ and $Y | (X = k)$ are normally distributed.

•
$$
E[X|Y=y] = \mu_X + \rho_{XY} \frac{\sigma_X}{\sigma_Y} (y-\mu_Y) = \mu_X + \frac{\text{Cov}[X,Y]}{\text{Var}[Y]} (y-\mu_Y)
$$

• $\text{Var}[X|Y=y] = \sigma_X^2 (1-\rho_{XY}^2)$

Mixtures of Distributions

Assume $p_1 + p_2 = 1$ and X_1 and X_2 are random variables. Let X be defined as follows: \quad $P[X=x_1]=p_1$ and \quad $P[X=x_2]=p_2$. Then:

• $f(x) = p_1 f_1(x) + p_2 f_2(x)$ • $E[X] = p_1 E[X_1] + p_2 E[X_2]$ • $E[X^2] = p_1 E[X_1^2] + p_2 E[X_2^2]$ • $M_X(t) = p_1 M_{X_1}(t) + p_2 M_{X_2}(t)$

Note: $\text{Var}[X] \neq p_1 \text{Var}[X_1] + p_2 \text{Var}[X_2]$. $\textsf{Instead, use } \text{Var}[X] = E[X^2] - (E[X])^2$

Transformations

Single Variable

Suppose that *X* is a continuous random variable with density $\int f_X(x)$. Assume $Y = u(X)$ is a one-to-one trans. with inverse $X = v(Y)$.

•
$$
f_Y(y) = f_X(v(y))|v'(y)|
$$

• If
$$
v(y)
$$
 is increasing, then $F_Y(y) = F_X(v(y))$

Multiple Variable

Suppose *X* and *Y* have joint density $f(x, y)$ and that that *U* and *V* are functions of *X* and *Y*. Let $x(u, v)$ and $y(u, v)$ refer to expressions for *x* and *y*, written in terms of *u* and *v*. The joint pdf of *U* and *V* is given by:

• $g(u, v) = f(x(u, v), y(u, v))|J|$ • Note that $J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$ *y*^{*u*} *y*^{*v*} *y*^{*v*}

Min/Max and Order Statistics

Minimum and Maximum

Suppose X_1, \ldots, X_n are independent random variables with CDF's and survival functions given by $F_1(x)$, ..., $F_n(x)$ and $S_1(x)$, ..., $S_n(x)$.

•
$$
F_{max}(x) = F_1(x) \cdot F_2(x) \cdot ... \cdot F_n(x)
$$

- $S_{min}(x) = S_1(x) \cdot S_2(x) \cdot ... \cdot S_n(x)$
- $F_{min}(x) = 1 [1 F_1(x)] \cdot ... \cdot [1 F_n(x)]$

Order Statistics

Suppose X_1, \ldots, X_n are independent observations of a variable X , and Y_1, \ldots, Y_n are the associated order statistics. Let g be the joint pdf of the order statistics and let g_k be the marginal pdf of Y_k .

•
$$
g(y_1, ..., y_n) = n! f(y_1) \cdot f(y_2) \cdot ... \cdot f(y_n)
$$
, where
\n $y_1 \le y_2 \le ... \le y_n$
\n• $g_k(t) = k {n \choose k} [F(t)]^{k-1} [S(t)]^{n-k} f(t)$

Insurance and Risk Management

Notation

- Let *X* = Loss associated with a claim.
- *Let Y* = Amount paid by insurer.

Deductible = *d*

•
$$
Y = \begin{cases} 0 & \text{if } X \le d \\ x - d & \text{if } X > d \end{cases}
$$

\n• $E[Y] = \int_{d}^{\infty} (x - d) f_X(x) dx = \int_{d}^{\infty} S_X(x) dx$

Policy Limit = *u*

• $Y = \begin{cases} X & \text{if } X \leq u \\ u & \text{if } X > u \end{cases}$ *u if X* >*u*

•
$$
E[Y] = \int_0^u x f_X(x) dx + u S_X(u) = \int_0^u S_X(x) dx
$$

Deductible = *d* **and Policy Limit =** *u*

- 0 if *X*≤*d*
- $Y = \begin{cases} X d & \text{if } d < X < d + u \\ u & \text{if } Y > d + u \end{cases}$ | u if $X > d + u$

•
$$
E[Y] = \int_{d}^{d+u} (x-d) f_X(x) dx + u S_X(d+u) = \int_{d}^{d+u} S_X(x) dx
$$

Sum of Random Variables

Expected Value and Variance

Assume
$$
Y = \sum_{i=1}^{n} X_i
$$
. Then:
\n• $E[Y] = E[X_1] + E[X_2] + ... + E[X_n]$
\n• $Var[Y] = \sum Var[X_i] + 2 \sum \sum Cov[X_i, X_j]$
\n• Note: $(X \perp Y) \Rightarrow Cov[X, Y] = 0$

Covariance

Assume
$$
X = \sum_{i=1}^{n} X_i
$$
 and $Y = \sum_{i=1}^{m} Y_i$. Then:
\n• $Cov[X, Y] = \sum_{n} \sum_{m} Cov[X_i, Y_j]$

Convolution Method (Discrete)

Let
$$
Y = X_1 + X_2
$$
, where $X_1, X_2 \ge 0$. Then $f_Y(y)$ is given by:

•
$$
f_Y(y) = \sum_{x_1=0}^{y} f(x_1, y - x_1)
$$

\n• $(\mathbf{X} \perp \mathbf{Y}) \Rightarrow f_Y(y) = \sum_{x_1=0}^{y} f_1(x_1) f_2(y - x_1)$

Convolution Method (Continuous)

Let
$$
Y = X_1 + X_2
$$
. Then $f_Y(y)$ is given by:
\n• $f_Y(y) = \int_{-\infty}^{\infty} f(x_1, y - x_1) dx_1$
\n• $(X \perp Y) \Rightarrow f_Y(y) = \int_{-\infty}^{\infty} f_1(x_1) f_2(y - x_1) dx_1$
\n• $(X_1, X_2 \ge 0) \Rightarrow f_Y(y) = \int_{0}^{y} f(x_1, y - x_1) dx_1$

Moment Generating Functions

If
$$
Y = \sum_{i=1}^{n} X_i
$$
 and the X_i 's are pairwise independent, then:
\n• $M_Y(t) = M_{X_1}(t) \cdot M_{X_2}(t) \cdot ... \cdot M_{X_n}(t)$

Central Limit Theorem

• Assume X_1, \ldots, X_n are independent and identically distributed

(IID) with mean μ and variance σ^2 , and let $Y = \sum_{i=1}^{n} X_i$.

- Then $E[Y] = n\mu$ and $Var[Y] = n\sigma^2$.
- If *n* is large, then $Y \stackrel{\text{approx}}{\sim} N(n\mu, n\sigma^2)$.

Sums of Specific Distributions

Discrete Distributions

Continuous Distributions

Additional comments:

• **Relationship between Poisson and Exponential:** Assume *X* = the time between successive events, and has an exponential distribution with mean 1/λ . Let *N* = the number of events occurring in one unit of time. Then *N* has a Poisson distribution with mean λ .

- Gamma CDF: Assume $X \sim GAM\left(\alpha, \beta\right)$, where $\alpha \in \mathbb{Z}^+$. Let $k>0$, $\lambda = \beta k$, and $Y \sim POI(\lambda)$. Then $F_x(k) = 1 F_y(\alpha-1)$.
- MIN of Exponential Variables: Assume $Y_1, Y_2, ..., Y_n$ have exponential distributions with means $1/\lambda_1, 1/\lambda_2, ..., 1/\lambda_n$. Let

 $Y = \min\bigl[Y_1,~Y_2,~...,~Y_n\bigr]$. Then Y has an exponential distribution with mean $~1/(\lambda_1+\lambda_2+...+\lambda_n)$.